论文部分内容阅读
介绍了卡尔曼滤波的基本模型,针对运动学方法以监测点位置参数、速率参数为状态向量,以加速度为噪声向量建立观测方程和状态方程的过程比较复杂。把自回归法引入状态方程和观测方程的建立中,并结合某露天矿滑坡动态监测数据分析了模型的应用。结果表明,滤波值和观测值之间差值保持在1~3cm之间,滤波后图像较原观测值图像更为光滑,表明所建模型是合适的,能够反映滑坡动态变化过程,从而为矿滑坡监测预报提供数学工具。