论文部分内容阅读
红外图像检测技术因具有非接触、快速等优点,被广泛应用于电力设备的监测与诊断中,而对设备快速精确地检测定位是实现自动检测与诊断的前提。与普通目标的可见光图像相比,电力设备的红外图像可能存在背景复杂、对比度低、目标特征相近、长宽比偏大等特征,采用原始的YOLOv3模型难以精确定位到目标。针对此问题,该文对YOLOv3模型进行改进:在其骨干网络中引入跨阶段局部模块;将路径聚合网络融合到原模型的特征金字塔结构中;加入马赛克(Mosaic)数据增强技术和Complete-IoU(CIoU)损失函数。将改进后的