论文部分内容阅读
为了改善医学图像的分割效果,结合字典学习和聚类算法,提出了一种以字典作为聚类中心,以稀疏表示实现聚类分割的医学图像分割算法.对于单幅的医学图像,可以通过交互进行稀疏表示和字典更新至收敛,从而实现无监督自适应分割;对于序列图像,则可以利用样本图像训练字典,并利用训练字典完成序列图像的分割.通过对SBD数据库的大脑MRI序列图像进行分割实验,结果表明,该算法有较好的分割精度,且能够保持序列医学图像分割的准确性和一致性.