论文部分内容阅读
近年来,奇异非线性多点边值问题被广泛研究,然而,涉及奇异超线性问题的工作相对较少,关于此类问题多个正解的存在性的工作更为少见,本文研究了三阶三点奇异边值问题(E){x^m=f(t,x) 0〈t〈1 x(0)=x′(η)=x″(1)=0 η∈(1/2,1)的多个正解的存在性,通过格林函数的性质和一个锥上的不动点定理证明:如果非线性项f在∞处为超线性的,并且在t=0,t=1,u=0处是奇异的,则上述问题至少存在两个正解。