论文部分内容阅读
对油中溶解气体浓度进行分析及发展趋势预测,可以为变压器的状态评估提供重要的依据。传统的离线DGA方法因易导致延迟判断变压器的运行状态,造成一定的经济损失,现已不适用于油中溶解气体浓度分析及预测。因此,提出一种基于随机森林的变压器油中溶解气体浓度预测模型,以更准确地分析与预测油中溶解气体浓度。该模型以7种气体浓度构成特征向量空间,作为可视输入,并以目标气体浓度作为输出。试验结果表明,相较于传统的机器学习方法(BPNN、RBF和SVM),随机森林模型能更准确地预测油中溶解气体浓度,且需要调整参数少、训练效率高。通过算例分析,验证了该方法的有效性。