论文部分内容阅读
现有的生成对抗网络(Generative Adversarial Networks,GAN)损失函数已经被成功地应用在迁移学习方法中。然而,发现这种损失函数在学习过程中可能会出现梯度消失的问题。为了克服该问题,提出了一种学习领域不变特征的新方法,即最小二乘迁移生成对抗网络(Least Squares Transfer Generative Adversarial Networks,LSTGAN)。LSTGAN采用最小二乘生成对抗网络(Least Squares Generative Adversarial