论文部分内容阅读
精确的电力负荷预测具有很大的经济和社会效益。本文基于深层神经网络研究负荷预测。文章首先分析了负荷预测中用到的关键特征,接着描述了深层神经网络和有监督的判别式预训练方法,以及文中使用的三种激活函数。最后,在一个较大的电力负荷数据集上比较了不同神经网络模型的预测效果。实验结果表明,使用有监督的预训练的深层神经网络具有最好的预测精度。