Oxygen defect-rich double-layer hierarchical porous Co3O4 arrays as high-efficient oxygen evolution

来源 :能源化学 | 被引量 : 0次 | 上传用户:dfly1818
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Construction of oxygen evolution electrocatalysts with abundant oxygen defects and large specific surface areas can significantly improve the conversion efficiency of overall water splitting.Herein,we adopt a controlled method to prepare oxygen defect-rich double-layer hierarchical porous Co3O4 arrays on nickel foam (DL-Co3O4/NF) for water splitting.The unique array-like structure,crystallinity,porosity,and chemical states have been carefully investigated through SEM,TEM,XRD,BET,and XPS techniques.The designated DL-Co3O4/NF has oxygen defects of up to 67.7% and a large BET surface area (57.4 m2 g-1).Electrochemical studies show that the catalyst only requires an overpotential of 256 mV to reach 20 mA cm-2,as well as a small Tafel slope of 60.8 mV dec-1,which is far better than all control catalysts.Besides,the catalyst also demonstrates excellent overall water splitting performance in a two-electrode system and good long-term stability,far superior to most previously reported catalysts.Electrocatalytic mechanisms indicate that abundant oxygen vacancies provide more active sites and good conductivity.At the same time,the unique porous arrays facilitate electrolyte transport and gas emissions,thereby synergistically improving OER catalytic performance.
其他文献
Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as unco
The application of commercial carbon fiber cloth (CFC) in energy storage equipment is limited by its low specific capacitance and energy density.By a simple one-step activation treatment,the specific surface area of CFCs with porous structure can be incre
MXene is a rising star of two-dimensional (2D) materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk of splashing or pouring liquid soluti
Lithium-sulfur batteries (LSBs) hold great potential for large-scale electrochemical energy storage applications.Currently,the shuttle of soluble lithium polysulfide (LiPSs) intermediates with sluggish conversion kinetics and random deposition of Li2S hav
Industrial propane dehydrogenation (PDH) catalysts generally suffer from low catalytic stability due to the coke formation onto the catalyst surface to cover the active sites.The exploitation of an efficient catalyst with both high catalytic selectivity a
Molybdenum phosphide (MOP) catalyst has been widely applied in hydrogenation reactions,while the preparation of unsupported MoP catalysts with ultra-small size and large specific surface area (SBET) is still challenging.Herein,we have provided a facile me
Polymeric organic battery materials are promising alternatives to the transition-metal-based ones owing to their enriched chemistries.However,the flammability of organic compounds brings in serious concern on battery safety.In addition to use flame-retard
Developing the highly active,cost-effective,environmental-friendly,and ultra-stable nonprecious electrocatalysts for hydrogen evolution reaction (HER) is distinctly indispensable for the large-scale practical applications of hydrolytic hydrogen production
Development of cost-effective and highly active oxygen evolution catalysts operating well in acidic media is a critical challenge in proton exchange membrane water electrolysis.Herein,we present a class of iridium-based 12L-perovskites (Ba4MIr3O12;M =Pr,B