2021年第三季度全国港口行业上市公司(A股)主要经济指标排序

来源 :中国港口 | 被引量 : 0次 | 上传用户:xiao2168644
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
2021年12月,长江集装箱综合运价指数为993.4点,环比上升0.4%.rn随着国内保供稳价、助企纾困等政策措施的推进,大宗商品价格涨幅出现回落,工业生产加快,外贸进出口良好,内外贸部分航线运价上涨,长江集装箱综合运价指数环比上升.长江上游区域社会消费品市场平稳,基本生活类商品家电等销售良好,汽车配件、化工品等外贸出口稳定,内外贸运价持平.
期刊
宁德位于福建省东北部,全区面积12 905 km2.三都澳港区位于宁德市东部沿海,台湾海峡北口,介于福州与温州之间,位于中国海岸中部,水陆交通均较为便利.由于历史原因,宁德港的开发建设处于落后状态,目前宁德的经济发展水平较为薄弱,基础设施建设不够完善,各项经济指标均处于全省中下游,制约建设“海峡西岸经济区”的战略构想,要促进福建省社会经济均衡化发展,推动闽东地区社会经济发展上一个新的台阶,必须加快三都澳港区的建设,完善海峡西岸港口群布局.
期刊
接种普通活性污泥,以乙酸盐为碳源,控制进水COD/P为150∶1,在A/O SBR反应器内富集培养了聚糖菌;采用逐渐提高SBR厌氧末硝酸盐投加浓度的方法,将聚糖菌驯化诱导为反硝化聚糖菌结果.SBR厌氧末排水中COD与缺氧末排水基本相同,COD平均去除率达到86.74%,总氮去除率达到98%以上.然后缩短SBR的厌氧及缺氧时间,即可启动内碳源短程反硝化(EPD)系统,缺氧末亚硝酸盐转化率(NTR)平均值为65.96%;表明内碳源短程反硝化与厌氧氨氧化(EPD-ANAMMOX)耦合工艺运行的30d内,COD去
采用缺氧/好氧间歇运行模式,考察进水碳氮比(C/N=5.0,3.3,2.5,2.0)对部分反硝化过程亚硝态氮(NO2)积累特性和污染物降解规律的影响,同时结合高通量测序,探究微生物多样性和功能菌群的演变规律.结果表明,C/N为2.5时,系统获得最佳处理效果,出水NO2-浓度为27.18mg/L,亚硝态氮转化率(NTR)高达67.96%;分析典型周期各污染物的降解规律发现,尽管4组工况均在缺氧30min时NO2-积累达到峰值(最高值分别为4.86(C/N=5.0),16.52(C/N=3.3),30.16(
选取河北省4类典型工业涂装行业开展车间与末端排口VOCs样品采集,检测分析了102种VOCs组分,获得了4类行业车间与排口处VOCs排放特征.结果表明,不同行业由于涂料类型、使用量等因素影响,VOCs排放浓度存在较大差异;芳香烃与含氧挥发性有机物(OVOCs)是家具制造、车辆制造与专用设备制造行业的主要组分,占比分别为14.7%~88.3%与10.1%~64.7%;卤代烃在金属制品行业的占比高达59.2%~86.9%.末端治理对芳香烃的影响最大,甲苯、乙苯、二甲苯、三甲苯、乙酸丁酯与2-丁酮在排口处占比明
以经厌氧-好氧处理的生物稳定渗滤液为研究对象,分别比较了其经活性炭吸附、混凝、芬顿和电解处理后的溶解性有机碳(DOC)、COD、溶解性氮(DN)和比紫外吸光度(SUV254)的变化,及去除单位COD的成本变化.研究发现,活性炭吸附、芬顿和混凝对生物稳定渗滤液的COD、DOC和DN的去除效率均随药剂投加量的增加而提高;包含化学氧化作用的芬顿和电解技术对芳构化有机物的去除效果更好,使得SUV254减少了60%~70%,且电流密度越大,去除效率越高;活性炭吸附去除单位毫克COD的价格最高,芬顿最低;对生物稳定渗
2007年,中国厦门外轮代理有限公司(简称“厦门外代”)凭借技术优势,通过整合企业内部信息化系统,同时适应电子商务发展的趋势,建设面向客户、面向协作伙伴、面向政府监管部门的企业关系管理系统,从而建立企业适应全球化竞争环境的一体化集成管理支撑平台和集成电子商务管理系统,建成了厦门港国际集装箱运输协作平台(简称“X-Service平台”),实现企业的全面电子化,这一模式已经成功在厦门港全面推行.随着国际集装箱运输业务流程的全面电子化,传统海运费支付流程已经无法适应电子商务应用发展,因此,厦门外代联手中国银行、
期刊
为进一步充分利用原水中碳源,实现生活污水与富含硝酸盐的工业废水同步脱氮,采用2个SBR和1个UASB串联,处理低C/N生活污水和硝酸盐废水,分别启动内源反硝化反应器(ED-SBR)、半短程硝化反应器(PN-SBR)和厌氧氨氧化反应器(AMX-UASB),考察各反应器处理性能,并探讨生活污水与硝酸盐废水同步脱氮的可行性.结果表明:ED-SBR在厌氧阶段能将进水中77.5%的有机物转化为内碳源,在缺氧阶段进行内源反硝化,平均出水NO3--N浓度为3.4mg/L,达到90.4%的平均去除率;PN-SBR在低DO
为提高水环境中NH4+-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH4+-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神经网络对各成份进行预测,将所有分解成份的预测结果相加即可获得最终预测结果.以2017年6月~2020年2月鄱阳湖的NH4+-N数据进行模型性能验证.结果表明,利用CCB模型在1d后的NH4+-N预测中平均绝对百分比误差为3.38%,在7d后的NH4+-N预
对3个具有不同优势菌种反应器中厌氧氧化(DAMO)过程与pH值进行动力学耦合,结果表明,在25℃,Anammox-DAMO混培系统最大脱氮速率、硝酸盐初始抑制浓度和铵盐初始抑制浓度分别为3.95mg/(L·d),182.63,196.40mg/L;Nitrate-DAMO系统最大脱氮速率、硝酸盐初始抑制浓度分别为4.30mg/(L·d),367.69mg/L;Nitrite-DAMO系统最大脱氮速率、亚硝酸盐初始抑制浓度分别为4.04mg/(L·d),293.35mg/L.脱氮速率均随pH值增加先增大后减