电化学氧化-碘促进丙酮α-H芳(烷)硒化制备α-芳(烷)硒基丙酮

来源 :有机化学 | 被引量 : 0次 | 上传用户:fei5051484
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
α-芳(烷)硒基酮作为重要的中间体在有机合成方面具有重要的应用.报道了电化学氧化-碘促进下,丙酮α-H芳(烷)硒化制备α-芳(烷)硒基丙酮化合物的方法,本方法使用稳定、易得的二芳(烷)基二硒醚作为硒化试剂.与已有的其它方法相比,本方法具有反应条件温和、原子经济性高、底物适用范围广等优点,为α-芳(烷)硒基丙酮化合物的制备提供了一条绿色、高效的合成路径.
其他文献
近年来,过渡金属催化的不对称碳氢键活化策略在手性化合物的高效合成中取得了巨大的进展[1-7],然而,不对称碳氢键官能化反应主要集中于单一手性中心的产生,同时构建具有多个手性中心的策略更加具有吸引力,也更具挑战性.迄今为止,利用不对称碳氢键活化策略同时构建双手性化合物常见于芳烃碳氢键活化后对烯烃的立体选择性插入,从而产生具有两个相邻手性中心的分子(Scheme 1a).或者是碳氢键官能化产生第一个手性中心进而诱导第二个手性中心产生(Scheme 1b).亦或者通过芳烃的去对称化的形成第一个手性中心,随后碳氢
期刊
Smiles重排是指分子内的亲核芳香取代反应,该类型反应最早可追溯到1894年Henrique的研究发现,并在20世纪30年代由Smiles教授发展并进行了系统的研究.此后,这类反应得到了蓬勃发展,在有机化学、材料化学、药物化学等领域中得到了广泛的应用.20世纪70年代,Speckamp等[1]报道了单电子转移Smiles重排过程,此后自由基型Smiles反应得到了一定程度的发展.这些新方法一定程度上弥补了传统离子型Smiles重排反应常见的底物局限性,但一般情况下需额外加入当量的氧化剂.近年来,镍催化的
期刊
烯基硅化合物是一类重要的原料,被广泛用于有机合成、高分子化学和材料科学领域[1].过渡金属催化炔烃的直接硅氢化反应是合成烯基硅化合物最高效和最原子经济性的方法之一.因此,该反应受到越来越广泛的关注[2].然而,炔烃与硅烷化合物的硅氢化反应过程中存在着化学选择性和区域选择性问题(图1).例如炔烃可以和硅烷反应生成半氢化的副产物,炔烃可以发生单次硅氢化生成烯基硅产物,也可能发生过度转化生成双硅化合物.同时,炔烃的硅氢化可以生成三种不同的加成产物,即马氏加成产物(α-烯基硅)和反马氏加成产物(β)-(E)-烯基
期刊
吡唑并嘧啶酮类化合物由于其与生物体内嘌呤的结构相似而具有多种活性,进而被广泛研究和应用.吡唑并嘧啶酮类化合物传统的合成方法存在一些不足,如需要酰化、环化两步完成等.报道了一种以水为介质、氢氧化钠作用下的5-氨基-4-氰基吡唑和芳香醛一锅环合形成1H-吡唑并[3,4-d]嘧啶-4(5H)-酮的方法.该方法具有原料易得、操作简单、良好的底物耐受性等优点.
吲哚酮、喹啉酮等两类重要杂环骨架,广泛存在于具有重要生物活性的天然产物和药物分子中[1].开发其高效、高选择性的构建方法一直是合成化学领域中的研究热点[2].rn过渡金属催化含杂原子烯烃分子内环化/分子间交叉偶联反应是构建杂环骨架的重要策略之一[3].在该类反应中,金属物种与系链烯烃发生分子内迁移插入生成烷基金属物种,再与另一偶联子发生交叉偶联.尽管目前已取得了重要进展,但是如何抑制烷基金属物种的β-H消除途径仍面临挑战.
期刊
源于D-核糖的苯并咪唑并氮杂糖1和2具有良好的β-葡萄糖糖苷酶抑制活性,对其苯环部位结构修饰,通过Mitsunobu反应合成了30个新型苯环不同位置上含单取代基的苯并咪唑并氮杂糖稠合三环衍生物11a~11g,12a~12g,13a~13h和14a~14h.测试了新合成化合物对β-葡萄糖糖苷酶(杏仁)的抑制活性.结果 显示,化合物13e和13f与14f的混合物对β-葡萄糖糖苷酶(杏仁)表现出优越的酶抑制活性,IC50值分别为0.49和0.25μmol/L,活性高于阳性对照米格列醇的酶抑制活性.构效分析表明,
为寻找高效、低毒的新型蛋白酪氨酸磷酸酶1B (PTP1B)抑制剂,设计并合成出了一系列新型含咔唑环和芳环/芳稠杂环的N-酰腙衍生物6~8和11.利用IR、1H NMR、13C NMR和2D NMR(包括1H-1H COSY和NOESY)谱及元素分析确定了其结构和构型.评价了目标化合物对PTP1B的抑制活性.实验结果表明,目标化合物对PTP1B均有较强的抑制活性,除了化合物N\'-[9-(2-氯噻唑-5-甲基)咔唑-3-亚甲基]-2-苯氨基乙酰肼(6a)、N\'-[9-(2-氯噻唑-5-甲基)咔唑-
芳基碘化合物是一类重要的合成砌块,在复杂分子合成、药物化学和材料科学中有着广泛的应用[1].与传统的合成方法相比,过渡金属催化的C(sp2)—H键碘化反应可以实现特定的区域选择性控制,为碘代芳烃及其衍生物的合成提供了一种简洁高效的策略[2].近年来,化学家们已经发展了一系列以碘单质、乙酸次碘酸酐(IOAc)、N-碘琥珀酰亚胺(NIS)、1,3-二碘-5,5-二甲基海因(DIH)等作为碘源的芳基底物C—H键碘化反应.这些碘化试剂通常具有较高的亲电活性,在反应过程中难以避免亲电碘化副产物的生成.因此有必要去探
期刊
基于在咖啡因8-位引入哌嗪活性基团的策略,以8-氯茶碱和取代哌嗪为原料,利用N-甲基化、亲核取代、(保护)脱保护等多步反应,合成了16个新型含取代哌嗪的咖啡因衍生物Ia~Ip,通过熔点、1H NMR、13C NMR和HRMS对新化合物进行了结构确认和表征,获得了8-(4-(3-溴-1-(3-氯吡啶-2-基)-1H-吡唑-5-甲酰基)哌嗪-1-基)-1,3,7-三甲基-3,7-二氢-1H-嘌呤-2,6-二酮(Ip)的单晶结构.生物活性测试结果表明,目标化合物大多对小菜蛾(Plutella xylostell
基于已知的金催化氧化六元环扩环策略,实现了一系列环庚三烯酮衍生物的合成.发现环庚三烯酮衍生物2-羟基-3,6-二甲基-5-氧代-1,3,6-环庚三烯-1-羧酸乙酯(3)、3,6-二.甲基-7-氧代-4-((三氟甲基)磺酰基)氧基)-1,3,5-环庚三烯-1-羧酸乙酯(9)、3,6-二.甲基-7-氧代-4-乙烯基-1,3,5-环庚三烯-1-羧酸乙酯(10)人胃癌细胞MGC-27表现出抗增殖活性,而活性相对较好的化合物9的抗增殖活性与胃癌细胞MGC-27凋亡没有关联.