论文部分内容阅读
To provide a certain level of Quality of Service (QoS) guarantees for multiuser wireless downlink video streaming transmissions, we propose a multiuser scheduling scheme for QoS guarantees. It is based on the classic Queue-Length-Based (QLB)-rate maximum scheduling algorithm and integrated with the delay constraint and the packet priority drop. We use the large deviation principle and the effective capacity theory to construct a new analysis model to find each user’s queue length threshold (delay constraint) violation probability. This probability corresponds to the upper bound of the packet drop probability, which indicates a certain level of statistical QoS guarantees. Then, we utilize the priority information of video packets and introduce the packet priority drop to further improve the quality perceived by each user. The simulation results show that the average Peak Signal to Noise Ratio (PSNR) value of the priority drop is 0.8 higher than that of the non-priority drop and the PSNR value of the most badly damaged video frame in the priority drop is on an average 4 higher than that of the non-priority drop.
To provide a certain level of Quality of Service (QoS) guarantees for multiuser wireless downlink video streaming transmissions, we propose a multiuser scheduling scheme for QoS requirements. It is based on the classic Queue-Length-Based (QLB) -rate maximum scheduling algorithm and integrated with the delay constraint and the packet priority drop. We use the large deviation principle and the effective capacity theory to construct a new analysis model to find each user’s queue length threshold (delay constraint) violation probability. This probability corresponds to the upper bound of the packet drop probability, which indicates a certain level of statistical QoS guarantees. Then, we utilize the priority information of video packets and introduce the packet priority drop to further improve the quality perceived by each user. The simulation results show that the average Peak Signal to Noise Ratio (PSNR) value of the priority drop is 0.8 higher than that of the non-priority drop and the PSNR value of the most badly damaged video frame in the priority drop is on an average 4 higher than that of the non-priority drop.