论文部分内容阅读
介绍了一种基于连续M元高斯混合密度的隐马尔可夫模型(HMM)的非特定人孤立词语音识别仿真系统。通过研究模型状态数、训练时间以及特征参数选取对语音识别率的影响,得出HMM状态数取4,训练次数为20次,特征参数选取48维LPCC和MFCC的混合参数,可使语音识别系统对于汉语孤立词的识别率达到90%。