论文部分内容阅读
为弥补CornerNet中小目标语义信息弱的缺陷,提出隔级融合特征金字塔的方法,提高小目标平均准确率。对骨干网络后半部分融合后的4个特征图进行提取,将尺寸较小的特征图进行2次卷积,得到2个新的特征图;运用上下融合、隔级融合和旁路连接的思想,生成融合后的特征图并将其组成特征金字塔。将改进后的算法与当前主流CornerNet、Faster RCNN、RetinaNet算法在MS COCO数据集上进行比较,结果表明,改进后算法在对小目标进行检测时,小目标平均准确率有较大提高。隔级融合特征金字塔在Corne