论文部分内容阅读
针对传统粒子群优化算法容易陷入局部极值和收敛速度慢等不足,通过研究种群多样性与粒子群算法进化的关系,提出一种动态自适应混沌量子粒子群优化(DACQPSO)算法。该算法将种群分布熵引入粒子群的进化控制,以Sigmoid函数模型为基础,给出了量子粒子群算法收缩扩张系数的计算方法;以平均粒距作为混沌搜索的判别条件进行混沌扰动。将DACQPSO算法应用于无线传感器网络(WSN)的覆盖优化中,并作了仿真分析。实验结果表明,DACQPSO算法在覆盖率指标上比标准粒子群、量子粒子群、混沌量子粒子群算法分别提高了3