A Visual-Based Gesture Prediction Framework Applied in Social Robots

来源 :自动化学报(英文版) | 被引量 : 0次 | 上传用户:yuzhiwei00
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In daily life, people use their hands in various ways for most daily activities. There are many applications based on the position, direction, and joints of the hand, including gesture recognition, gesture prediction, robotics and so on. This paper proposes a gesture prediction system that uses hand joint coordinate features collected by the Leap Motion to predict dynamic hand gestures. The model is applied to the NAO robot to verify the effectiveness of the proposed method. First of all, in order to reduce jitter or jump generated in the process of data acquisition by the Leap Motion, the Kalman filter is applied to the original data. Then some new feature descriptors are introduced. The length feature, angle feature and angular velocity feature are extracted from the filtered data. These features are fed into the long-short time memory recurrent neural network (LSTM-RNN) with different combinations. Experimental results show that the combination of coordinate, length and angle features achieves the highest accuracy of 99.31%, and it can also run in real time. Finally, the trained model is applied to the NAO robot to play the finger-guessing game. Based on the predicted gesture, the NAO robot can respond in advance.
其他文献
This paper investigates the stabilization of underactuated vehicles moving in a three-dimensional vector space. The vehicle\'s model is established on the matrix Lie group SE(3), which describes the configuration of rigid bodies globally and uniquely. W
Sampling-based planning algorithms play an important role in high degree-of-freedom motion planning (MP) problems, in which rapidly-exploring random tree (RRT) and the faster bidirectional RRT (named RRT-Connect) algorithms have achieved good results in m
This paper presents learning-enabled barrier-certified safe controllers for systems that operate in a shared environment for which multiple systems with uncertain dynamics and behaviors interact. That is, safety constraints are imposed by not only the ego
This paper shows that the aerodynamic effects can be compensated in a quadrotor system by means of a control allocation approach using neural networks. Thus, the system performance can be improved by replacing the classic allocation matrix, without using
Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system
In this paper, a data-driven conflict-aware safe reinforcement learning (CAS-RL) algorithm is presented for control of autonomous systems. Existing safe RL results with pre-defined performance functions and safe sets can only provide safety and performanc
Satellite swarm coordinated flight (SSCF) technology has promising applications, but its complex nature poses significant challenges for control implementation. In response, this paper proposes an easily solvable adaptive control scheme to achieve high-pe
A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets (PNs). In this paper, we propose an algorithm for the enumeration of minimal siph
Visual localization is a crucial component in the application of mobile robot and autonomous driving. Image retrieval is an efficient and effective technique in image-based localization methods. Due to the drastic variability of environmental conditions,
Localization of sensor nodes in the internet of underwater things (IoUT) is of considerable significance due to its various applications, such as navigation, data tagging, and detection of underwater objects. Therefore, in this paper, we propose a hybrid