论文部分内容阅读
为提高负荷预测精度,更好地反映负荷的动态特性,提出了一种基于Elman神经网络的预测方法。先对负荷样本进行数据预处理,消除伪数据,然后把不同日各时刻的负荷序列作为样本,对未来时刻的负荷进行短期预测。预测实例表明,基于Elman神经网络的预测方法比基于BP神经网络的预测方法具有更好的预测效果。