论文部分内容阅读
针对目前遥感图像分类算法存在精度低、速度慢等问题,提出一种基于量子粒子群算法的遥感图像分类算法,以提高遥感图像的分类效果.首先分析目前遥感图像分类算法存在的不足及其原因;然后提取多种类型的遥感图像原始特征,采用量子粒子群算法对特征进行筛选,以提取对遥感图像分类结果较重要的特征;最后采用最小二乘支持向量机(LSSVM)建立遥感图像分类器,实现遥感图像分类和识别,并进行遥感图像分类的仿真对比实验.实验结果表明,该算法克服了当前遥感图像分类算法存在的局限性,大幅度提高了遥感图像的分类精度,有效减少了图像分