论文部分内容阅读
针对数据集中无关的、干扰的属性会降低决策树算法性能的问题,提出了一个新的决策树算法,此算法根据对测试属性进行约简选择,提出以测试属性和决策属性的相似性作为决策树的启发规则来构建决策树,同时使用了分类阈值设定方法简化决策树的生成过程。实验证明,该算法运行效率和预测精度都优于传统的ID3算法。