论文部分内容阅读
我国古代有一个美丽的传说,说宇宙原来是混沌一片,后来盘古开天辟地,世界才成形。当然,这只是神话,不是科学。
根据现代科学的认识,我们生活在其中的这一个宇宙是在大约150亿年前的一次宇宙大爆炸中诞生的,大爆炸以前和大爆炸最初10-43秒以内,宇宙是什么样子?目前的科学还无可奉告。只知道大爆炸后10-43秒时,宇宙的密度高达1049克/厘米3 ,温度是1032摄氏度。
当时世界上的物质是我们还不清楚的粒子。瞬间以后,出现了大批我们今天所认识的“粒子”,其中有一类叫做“中微子”。它们不带电,质量极小,与其他粒子的相互作用极弱,长期在太空遨游。还有另外一些粒子,由于它们的相互作用较强,随着宇宙温度的变冷而逐渐凝结成原子、分子,凝聚成星球。大约50亿年前,太阳和太阳系形成了,其中也包括地球。
在微观世界中,中微子一直是一个无所不在、而又不可捉摸的过客。中微子产生的途径有很多, 如恒星内部的核反应,超新星的爆发,宇宙射线与地球大气层的撞击,以至于地球上岩石等各种物质的衰变等。由于中微子与物质的相互作用极弱,难以捉摸,以致人们至今对它的认识还很肤浅,就连它有无质量也还没有搞清楚。
虽然单个中微子的质量微不足道,但由于宇宙中它的数量极其巨大,平均每立方厘米有300个,密度与光子相仿,比其他粒子都要多出数十亿倍,它有无质量关系到人类所在的宇宙将如何演变。科学家目前认同的有两种设想:一种情况是宇宙将像现在这样永远膨胀下去,另一种情况是它膨胀到一定程度后在自身引力作用下发生收缩。哪一种情况会发生取决于宇宙的总质量。如果总质量小于某个临界值,宇宙自身的引力就不足够大,前者将会发生;反之后者将会发生。如果中微子具有静止质量,其总质量会非常惊人,影响到宇宙总质量与临界质量的对比关系,也就是决定宇宙是膨胀还是收缩。
另外,从星球内部发出的光很难穿出庞大的星球,我们观察到的星光、太阳光只是星球和太阳表面发出的光,只有中微子才能畅通无阻地将星球、太阳内部的信息带给我们。
这种神奇的中微子,又是如何被人类发现的呢?
这要从19世纪末20世纪初对放射性的研究说起了。当时,科学家们发现,在量子世界中,能量的吸收和发射是不连续的。不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的。但奇怪的是,物质在β衰变过程中释放出的由电子组成的β射线的能谱却是连续的,而且电子只带走了它应该带走的能量的一部分,还有一部分能量竟然失踪了。
1931年春,国际核物理会议在罗马召开,当时世界最顶尖的核物理学家汇聚一堂,其中有海森堡、泡利、居里夫人等。泡利在会上提出,β衰变过程中能量守恒定律仍然是正确的,能量亏损的原因是因为中子作为一种大质量的中性粒子在衰变过程中变成了质子、电子和一种质量小的中性粒子,正是这种小质量粒子将能量带走了。奥地利物理学家泡利预言的这个窃走能量的“小偷”就是中微子。1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子”正名为“中微子”。
泡利的中微子假说和费米的β衰变理论虽然逐渐被人们接受,但终究还蒙上了一层迷雾:谁也没有见到中微子。就连泡利本人也曾说过,中微子是永远测不到的。而1946年,意大利天才的物理学家布鲁诺·蓬泰科尔沃想出了捕捉这种神秘莫测的“幽灵”的方法。他的原理是:当中微子进入氯原子的原子核后,就会变成可探测到的放射性氩粒子。蓬泰科尔沃的方法多年之后才在技术上得以运用。
在电子俘获试验证实了中微子的存在以后,进一步的工作就是测量中微子与其他粒子相互作用引起的反应,直接探测中微子。由于中微子与物质相互作用极弱,这种实验是非常困难的。直到1956年,这项试验才由美国物理学家弗雷德里克·莱因斯完成。首先实验需要一个强中微子源,核反应堆就是合适的源。这是由于核燃料吸收中子后会发生裂变,分裂成碎片时又放出中子,从而使其再次裂变。裂变碎片大多是β放射性的,反应堆中有大量裂变碎片,因此它不仅是强大的中子源,也是一个强大的中微子源。因为中微子反应几率很小,要求用大量的靶核,莱因斯选用氢核(质子)作靶核,使用了两个装有氯化镉溶液的容器,夹在三个液体闪烁计数器中。这种闪烁液体是一种在射线下能发出荧光的液体,每来一个射线就发出一次荧光。由于中微子与构成原子核的质子碰撞时发出的明显的频闪很有特异性,从而证实了中微子的存在。为此,他与发现轻子的美国物理学家马丁·珀尔分享了1995年诺贝尔物理学奖。
编辑/李章
根据现代科学的认识,我们生活在其中的这一个宇宙是在大约150亿年前的一次宇宙大爆炸中诞生的,大爆炸以前和大爆炸最初10-43秒以内,宇宙是什么样子?目前的科学还无可奉告。只知道大爆炸后10-43秒时,宇宙的密度高达1049克/厘米3 ,温度是1032摄氏度。
当时世界上的物质是我们还不清楚的粒子。瞬间以后,出现了大批我们今天所认识的“粒子”,其中有一类叫做“中微子”。它们不带电,质量极小,与其他粒子的相互作用极弱,长期在太空遨游。还有另外一些粒子,由于它们的相互作用较强,随着宇宙温度的变冷而逐渐凝结成原子、分子,凝聚成星球。大约50亿年前,太阳和太阳系形成了,其中也包括地球。
在微观世界中,中微子一直是一个无所不在、而又不可捉摸的过客。中微子产生的途径有很多, 如恒星内部的核反应,超新星的爆发,宇宙射线与地球大气层的撞击,以至于地球上岩石等各种物质的衰变等。由于中微子与物质的相互作用极弱,难以捉摸,以致人们至今对它的认识还很肤浅,就连它有无质量也还没有搞清楚。
虽然单个中微子的质量微不足道,但由于宇宙中它的数量极其巨大,平均每立方厘米有300个,密度与光子相仿,比其他粒子都要多出数十亿倍,它有无质量关系到人类所在的宇宙将如何演变。科学家目前认同的有两种设想:一种情况是宇宙将像现在这样永远膨胀下去,另一种情况是它膨胀到一定程度后在自身引力作用下发生收缩。哪一种情况会发生取决于宇宙的总质量。如果总质量小于某个临界值,宇宙自身的引力就不足够大,前者将会发生;反之后者将会发生。如果中微子具有静止质量,其总质量会非常惊人,影响到宇宙总质量与临界质量的对比关系,也就是决定宇宙是膨胀还是收缩。
另外,从星球内部发出的光很难穿出庞大的星球,我们观察到的星光、太阳光只是星球和太阳表面发出的光,只有中微子才能畅通无阻地将星球、太阳内部的信息带给我们。
这种神奇的中微子,又是如何被人类发现的呢?
这要从19世纪末20世纪初对放射性的研究说起了。当时,科学家们发现,在量子世界中,能量的吸收和发射是不连续的。不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的。但奇怪的是,物质在β衰变过程中释放出的由电子组成的β射线的能谱却是连续的,而且电子只带走了它应该带走的能量的一部分,还有一部分能量竟然失踪了。
1931年春,国际核物理会议在罗马召开,当时世界最顶尖的核物理学家汇聚一堂,其中有海森堡、泡利、居里夫人等。泡利在会上提出,β衰变过程中能量守恒定律仍然是正确的,能量亏损的原因是因为中子作为一种大质量的中性粒子在衰变过程中变成了质子、电子和一种质量小的中性粒子,正是这种小质量粒子将能量带走了。奥地利物理学家泡利预言的这个窃走能量的“小偷”就是中微子。1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子”正名为“中微子”。
泡利的中微子假说和费米的β衰变理论虽然逐渐被人们接受,但终究还蒙上了一层迷雾:谁也没有见到中微子。就连泡利本人也曾说过,中微子是永远测不到的。而1946年,意大利天才的物理学家布鲁诺·蓬泰科尔沃想出了捕捉这种神秘莫测的“幽灵”的方法。他的原理是:当中微子进入氯原子的原子核后,就会变成可探测到的放射性氩粒子。蓬泰科尔沃的方法多年之后才在技术上得以运用。
在电子俘获试验证实了中微子的存在以后,进一步的工作就是测量中微子与其他粒子相互作用引起的反应,直接探测中微子。由于中微子与物质相互作用极弱,这种实验是非常困难的。直到1956年,这项试验才由美国物理学家弗雷德里克·莱因斯完成。首先实验需要一个强中微子源,核反应堆就是合适的源。这是由于核燃料吸收中子后会发生裂变,分裂成碎片时又放出中子,从而使其再次裂变。裂变碎片大多是β放射性的,反应堆中有大量裂变碎片,因此它不仅是强大的中子源,也是一个强大的中微子源。因为中微子反应几率很小,要求用大量的靶核,莱因斯选用氢核(质子)作靶核,使用了两个装有氯化镉溶液的容器,夹在三个液体闪烁计数器中。这种闪烁液体是一种在射线下能发出荧光的液体,每来一个射线就发出一次荧光。由于中微子与构成原子核的质子碰撞时发出的明显的频闪很有特异性,从而证实了中微子的存在。为此,他与发现轻子的美国物理学家马丁·珀尔分享了1995年诺贝尔物理学奖。
编辑/李章