论文部分内容阅读
本文提出一种偏微分方程解的数值验算方法.首先应用有限元的方法求偏微分方程的数值解,然后将偏微分方程的解转化为一个紧算子的不动点,我们验证算子在某一个集合中满足不动点定理,从而偏微分方程的解存在.接着通过分析的方法将不动点定理的条件转化为计算机可以计算的条件,最后结合区间验算的方法避免计算机计算过程中存在的截断误差,从而证明所求近似解的附近存在精确解.