庚醛与亚硫酸氢钠加成反应动力学研究

来源 :化工学报 | 被引量 : 0次 | 上传用户:caoshaohua2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
醛能与亚硫酸氢钠发生快速的可逆亲核加成反应,该反应可用于去除混合物中的醛。目前醛类加成的动力学研究多集中于低碳醛或芳香醛,缺少高碳脂肪醛的相关数据,且常用的分析方法如碘量法和紫外分光光度法应用局限性大。以庚醛为研究对象,利用在线红外光谱仪,实时监测了283.15~298.15 K温度下庚醛与亚硫酸氢钠的加成反应过程,通过对实验数据的计算与拟合,求得不同温度的反应速率常数和平衡常数,确定了反应的动力学方程,为庚醛的分离应用提供理论基础。结果表明,随着反应温度升高,庚醛反应速率增大,而平衡转化率减小。庚醛与亚
其他文献
热能与动力工程、锅炉等是研究的关键点。分析了锅炉、热能与动力工程,对锅炉领域中热能与动力工程应用问题加以剖析,并分析了锅炉领域热能与动力工程应用必要性,最后从风机监控、燃烧控制等方面对两者的结合详细研究,并明确未来发展方向,目的在于充分挖掘锅炉领域热能与动力工程的应用价值。
基于工质相变热虹吸效应,提出了动力电池双向热管理系统,通过改变工质充注量,60~220 g时,试验测试了该系统的双向热管理性能,并据此进行系统优化。结果表明:该热管理系统的正常运行有一个最低充注量。系统优化前,加热工况,系统换热功率受充注量的影响小;散热工况,系统的换热功率随充注量的增加而增大,随电池箱初始温度升高而增大,且强制散热效果要优于自然散热;相同充注量,换热板表面的最大温差随电池箱初始温度升高而增大,在3C放电倍率,无法控制电池表面温度低于45℃。系统优化后,圆管换热板系统的换热效果要优于矩形管
离子液体催化反应精馏是提高酯交换平衡反应转化率的一种绿色有效方法。以离子液体1-丙基磺酸-3-甲基咪唑三氟甲烷磺酸盐([PSO3HMIm][OTf])和离子液体1-辛基-2,3-二甲基咪唑双(三氟甲烷磺酰)亚胺盐([OMMIm][Tf2N])的混合物作为乙酸甲酯和正己醇进行酯交换反应合成乙酸正己酯的催化剂,测定了酯交换反应动力学。探讨了混合比、反应温度、反应物初始摩尔比、催化剂浓度对反应速率和乙酸甲酯转化率的影响,考察了催化剂的回收性能。利用实验数据回归得出混合
在多孔介质区考虑局部非热平衡,采用Brinkman-extended Darcy模型结合应力跳跃条件对部分填充多孔介质通道内流体传热特性进行分析。获得了各区域温度分布及Nusselt数解析解,并分析了各参数对温度及Nusselt数的影响。结果表明:界面对流传热系数Hs较小时,界面应力跳跃系数β和Darcy数Da的增加会减小流固两相间温差。而在高Hs下,Da减小也会减小两相温差。在Da、Hs和固流两相热导率之比K较大且空心率S(自由流体区高度
在保证选择性的前提下高效光催化氧化苯甲醇为苯甲醛仍然是当下面临的一个巨大挑战。g-C3N4的价带位置适中,具有温和的氧化能力,已被开发用来光催化氧化苯甲醇以保证反应的选择性,但由于其电子空穴复合率高导致反应的转化率难以提升。由于Bi2O2CO3的超薄片层结构不仅可以增加催化剂的比表面积形成更多的活性中心,同时可以形成局部电场,更有效地分离光生电子-空穴对,因此通过构建Bi2O
随着社会发展中各种生产制造活动的蓬勃发展,我国水源污染形势日益严峻。水是世界生命之源,必须以多种方式加以治理。采用水源污染指数值法,以河水水质评价为例,分析了水源污染指标值法在河水水质评价中的应用。
通过对GB/T 5750.8附录B《固相萃取/气相色谱-质谱法测定半挥发性有机化合物》方法进行验证,以评价该检测方法是否适用于水中敌敌畏的检测,以确保该方法能够满足水中敌敌畏的测定。
对HJ828—2017《水质化学需氧量的测定重铬酸钾法》进行了方法验证,以评价该检测方法是否适用于水中化学需氧量的检测工作,以确保该方法能够满足水中化学需氧量的测定。
基于所建立的深井套管式换热器井孔内、外非稳态传热模型,推导得到富水型热储层地下水渗流作用下深井换热器进(出)水管、固井水泥温度以及热储层过余温度的瞬态解析解。以示范工程现场监测数据与有限体积法数值计算结果为验证依据,探究热储层中渗流过程对于深井换热器传热特性的影响。计算得到,当深井换热器循环水量稳定在30 m3/h时,热储层中达西流速由0提高到5×10-6m/s时,平均换热量增大55 kW。然而在忽略热储层中渗流过程时,循环水量由30 m3
孔结构被广泛应用于传质塔填料中,对填料上的液膜流动和传质行为影响较大。对竖直光板和多孔板上的液膜流动进行了三维模拟,并通过实验验证了模拟的准确性。通过模拟研究了孔结构对液膜流动特性的影响。结果表明,干燥孔会阻碍液膜的铺展,而润湿孔促进液膜的铺展。与光板相比,多孔板上的液膜具有起伏波,这将影响液膜的厚度分布和速度分布。液膜厚度波动和水平方向的速度波动随着孔径的增加而增加,而竖直流动方向的速度随着孔径的增加而降低。当孔径增加到一定值时,毛细波将出现在孔中的液膜中,这大大增加液膜水平方向上的波动速度,而降低流动