论文部分内容阅读
In this paper, an effective system for synthesizing animal skin patts on arbitrary polygonal surfaces is developed. To accomplish the task, a system inspired by the Clonal Mosaic (CM) model is proposed. The CM model simulates cells’ reactions on arbitrary surface. By controlling the division, mutation and repulsion of cells, a regulated spatial arrangement of cells is formed. This arrangement of cells shows appealing result, which is comparable with those natural patts observed from animal skin. However, a typical CM simulation process incurs high computational cost, where the distances among cells across a polygonal surface are measured and the movements of cells are constrained on the surface. In this framework, an approach is proposed to transform each of the original 3D geometrical planes of the surface into its Canonical Reference Plane Structure. This structure helps to simplify a 3D computational problem into a more manageable 2D problem. Furthermore, the concept of Local Relaxation is developed to optimally enhance the relaxation process for a typical CM simulation. The performances of the proposed solution methods have been verified with extensive experimental results.