最新的功率计技术

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:qukangmin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
A scheme for photonic generation of ultra-wideband (UWB) pulses using a semiconductor optical amplifier (SOA) and an electro-absorber (EA) in parallel is proposed and numerically demonstrated. By adjusting the time delay between two pump signals incident
本文叙述一种利用若丹明6G粢料激光器的腔内倍频、在光谱区290~315亳徵米内频率连续可调的紫外光源。在296亳徵米得到腔内二次谐波最大功率1.1亳瓦,具有0.1亳徵米的带宽。
期刊
期刊
为了使光学元件的动态响应变得尽可能小并满足质量指标,需要对空间光学遥感器的 质量进行分配。通过建立空间光学遥感器的全阻尼动态分析模型,得到了光学元件动态响应的表达 式。根据该表达式讨论了不同动力学系统的动态放大特点。然后从实际工程条件出发,通过MATLAB 编程进行了数值分析,讨论了使光学元件响应尽量小的质量分配条件。结果表明,当阻尼比均为0.03、 频率比β为1.3、质量比为0.51时,光学元件的动态响应接近最小值。本文依据理论公式提出的这种方法 可通过图形判读结果,因此具有结果可靠、简单便捷等特点。
In order to broaden the scope of application and ensure the calibration precision, a new method of linear calibration by making fully use of vanishing point attributes is proposed. The method dose not need any rigorous restrictions, and solves the self-ca
A frequent consequence of traumatic brain injury (TBI) is cognitive impairment, which results in significant disruption of an individual's everyday living. To date, most clinical rehabilitation interventions still rely on behavioral observation, with lit
为了诊断惯性约束聚变的聚爆靶的尺寸、形状、分布和均匀性等情况,利用X射线布拉格衍射理论,搭建了基于球面弯曲晶体的X射线背光成像系统。其核心元件是α-石英球面弯晶,α-石英晶体性质稳定,结构完整,反射率和分辨率高。弯曲晶体尺寸为65 mm×20 mm,弯曲半径为143.3 mm。利用该背光成像系统进行了单色X射线背光成像实验。成像物体为3×3阵列的正方形不锈钢网格,利用接收装置磷屏成像板,得到清晰的Cr Kα X射线背光源二维空间分辨,在9.6 mm×28.7 mm的视场范围内,其像的空间分辨率大约为83.
提高光学系统分辨率的主要方法是增大光学系统的通光口径,而使用子镜拼接得到一块等效大口径主镜是增大通光口径的常用方法。拼接主镜光学系统入轨后子镜进行展开,展开位置与设计位置偏差大小决定光学系统成像质量好坏,因此需要对子镜展开位置的精度进行分析。使用光学软件对拼接主镜光学系统建模,调整子镜6个自由度的位置误差得到其与系统成像质量的关系曲线。结果表明,针对不同位置的子镜,相同位置误差产生的系统波前误差的均方根(RMS)值大小不同,中层子镜对沿着X轴方向的移动敏感,而外层子镜对沿着Y轴方向上的移动敏感。通过对每个
基于多物理场有限元分析与理论计算相结合的方法, 采用Intellisuite软件完成了12μm×12μm微测辐射热计结构的设计与仿真, 具体工作包括: 单元结构二维版图及工艺流程设计和单元结构三维精确建模, 结合实际MEMS结构的材料参数, 进行了电学与热电耦合多物理场有限元仿真模拟分析。通过仿真优化获得探测单元的主要热电参数、响应时间和响应率, 分别为: 热导4.31×10-8W/K、热容2.69×10-10J/K、电压响应率(未经后端读出电路放大)7200V/W、热响应时间6.24ms。采用所提出的微
冲击定位可为结构冲击损伤提供准确的位置信息。基于光纤布拉格光栅(FBG)传感器存在解调频率低、需要训练样本等缺点,提出了一种利用光纤Sagnac传感技术实现结构冲击定位的方法。基于此方法的传感系统主要由宽带光源、光纤Sagnac干涉仪、光探测器以及数据采集与处理单元构成。当粘贴在结构表面的传感探头受到冲击应力波作用时,Sagnac干涉仪相位受到调制,从而导致输出的光强发生变化,通过光探测器将光信号转换为电压信号输出。首先,对传感系统采样的时域信号进行小波降噪和去直流干扰处理,再利用Db4小波包进行能量特征