Graphdiyne:a Highly Sensitive Material for ppb-Level NO2 Gas Sensing at Room Temperature

来源 :高等学校化学研究(英文版) | 被引量 : 0次 | 上传用户:Nibel
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Detection of a trace amount of NO2 at room temperature has very important applications in air quality monitoring,protection of human health and medical diagnose.However,the existing NO2 sensors often suffer from low sensitivity when the concentration at the ppb-level.Here,we report a new kind of materials based on graphdiyne(GDY)for highly sensitive detection of ppb-level(ppb:part per billion)NO2 at room temperature.After thermal treatment of the as-prepared GDY at 600℃under argon atmosphere for 2 h(the obtained sample denoted as GDY-600),the prepared sensor with GDY-600 displays excellent sensitivity with a response value of 6.2%towards 250 ppb NO2 at room temperature,which is better than most of reported sensing materials.In addition,the sensor exhibits significantly high selectivity to NO2 against typical interfering gases including CO,CO2,NH3,H2,H2S and toluene.Moreover,the sensor shows remarkable stability after repetitive measurements.The superior sensing performance of GDY-600 can be ascribed to the highly π-conjugated structure with special acetylenic bonds and abundant oxygen-containing functional groups,which are all beneficial for the gas adsorption and redox reaction on the surface.
其他文献
The carbon-based metal-free catalyst is one of the ideal alternatives to Pt as electrocatalysts for oxygen reduction reaction,which can reduce the cost of fuel cells and zinc-air batteries.Here,graphdiyne(GDY),a carbon material with uneven charge distribu
The transition metal-based materials have been regarded as promising electrocatalysts for oxygen evolution reaction(OER).However,achieving higher efficiency is largely limited by the valence states of metal species.Herein,different graphdiyne(GDY)-nickel
Graphdiyne(GDY),a new carbon allotrope composed of sp-sp2 carbon atoms,has attracted increased attention in recent years.It has a direct band gap of 0.46-1.22 eV,high charge carrier mobility and lower work function compared to most of the typical semicond
Herein,we report a comparative investigation of the electrochemical lithium diffusion within graphidyne(GDY)based electrodes.The transfer kinetic behaviors of lithium ions during the insertion/extraction process are analyzed through different methods incl
基于河源雷达站的历史观测数据,挑选不同灾害天气(台风、前汛期暴雨、大范围强对流)下对应的天气系统,采用VAP方法对这些天气系统的风场进行反演并分析,结果表明:该方法对于前汛期暴雨类型天气系统能够较好反演出整体风场分布及切变线的位置、移动趋势等;对于台风系统在台风一二象限反演效果较好,但反演出的风场只能指示回波的移动方向,对于台风内部风场结构反演效果则不佳;对强对流天气系统能够很好反演出环境风场以及指示系统的移动方向,但对于系统内部中小尺度系统反演方法效果不佳.
Graphdiyne(GDY)has the unique feature in the topological ordered arranged sp-and sp2-hybridized carbon atoms,thus deriving a series of 2D allotropes.Due to inhomogeneous π-bonding and carbon orbital overlap between different hybrid carbon atoms,GDY posses
介绍了综合气象数据流监控系统的设计,提出一种快速定位、监控数据更新的方法.阐述了综合气象数据监控算法以及构建数据监控链路等主要功能的设计原理及实现方法,为加强气象数据集的管理提高技术支撑.
The inhibition of the methanol crossover is one of the intractable challenges in the direct methanol fuel cell.The graphdiyne(GDY)with atomic-level pores shows great potential in realizing the zero-permeation of methanol molecules.In this paper,an ultrath
Graphdiyne(GDY),which is composed of sp2-/sp-hybridized carbon atoms,has attracted increasing attention.In the structure of GDY,the existence of large triangular-like pores,well dispersed electron-rich cavities as well as a large π-conjugated structure en
Graphdiyne(GDY)based atom catalysts(Acs)show extraordinary electrocatalytic activities towards hydrogen evolution reaction(HER)and water oxidation reaction(OER),which have attracted wide attention of scientists.However,a precise understanding on the activ