论文部分内容阅读
张量的分解是主成分分析(PCA)在高阶上的扩展,目前几种张量分解方法各有优缺点,难以满足PCA的所有性质.基于4种经典的张量分解方法并没有在人脸识别中进行比较分析,利用ORL人脸数据库比较了4种经典的张量分解方法.实验结果表明,张量方法在压缩率大的情况下,其性能有显著的提高.不同的张量分解方法显示理论上分析Higher-Order Orthogonal Iteration(HOOI)的拟和度最好,但这4种方法用到实际人脸数据上并没有多大差别.考虑到Higher-Order Singular Valu