论文部分内容阅读
利用辛积分和高阶交错差分方法建立了求解含时薛定谔方程的高阶辛算法(SFDTD(4,4)).对空间部分的二阶导数采用四阶准确度的差分格式离散得到随时间演化的多维系统再引入四阶辛积分格式离散;探讨了SFDTD(4,4)法的稳定性,获得了含时薛定谔方程的一维以及多维的稳定性条件,并得到在含势能情况下该稳定性条件的具体表达式;借助复坐标沿伸概念,实现了SFDTD(4,4)法在量子器件模拟中的完全匹配层吸收边界条件.结合一维量子阱和金属场效应管传输的仿真,结果表明较传统的时域有限差分算法,SFDTD(4,4)有着更