论文部分内容阅读
The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project(Transition Location Effect on Shock Wave Boundary Layer Interaction).In order to investigate the flow structure on the suction side of a profile,a design of a generic test section in linear transonic wind tunnel was proposed.The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile.Near the sidewalls the suction slots are applied for the corner flow structure control.It allows to control the Axial Velocity Density Ratio(AVDR),important parameter for compressor cascade investigations.Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization,schlieren and Pressure Sensitive Paint.Boundary layer transition location is detected by Temperature Sensitive Paint.
The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction) .In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and pressure Sensitive Paint.Boundary layer transition location is detected by Temperature Sensitive Paint.