论文部分内容阅读
食品是人类赖以生存和发展的物质基础,食品的安全问题既是最基本的质量要求,也是关系到人民健康和国计民生的重大问题,而食品分析检测技术则是保证食品安全的必要手段。
样品前处理是食品分析检测工作的瓶颈。一个完整的样品分析过程包括样品采集、样品前处理、分析测定、数据处理和报告结果5个部分,其中样品处理所需的时问约占整个分析时问的2/3。而且,前处理效果的好坏直接影响检测结果,因为样品被玷污或因吸附、挥发等造成的损失,往往使分析结果失去准确性,甚至得出错误结论。
近年来,提取净化等检测前处理技术不断发展,许多优秀的样品制备新技术争相出现。这些新技术的共同特点是节省时问、减轻劳动强度、节省溶剂、减少样品用量、提取或净化效率及自动化水平高。目前已报道的新技术有很多,但较有应用前景,且已有定应用的新技术主要有:超临界流体萃取技术、固相微萃取技术、吹扫捕集技术、微波辅助萃取技术、快速溶剂提取技术等。超临界流体萃取技术
物质处于临界温度和临界压力以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液态性质,同时还保留气体性能,这种状态的流体称为超临界流体(supercritIcaIfluid)。超临界流体既具有液体对溶质有比较大的溶解度的特点,又具有气体易于扩散和运动的特性,传质速率高于液相过程。更重要的是在临界点附近,压力和温度的微小变化都可以引起流体密度的很大变化。因此,可以利用压力、温度的变化来实现提取和分离过程。
自从Zosel首次报道应用超临界流体萃取(SFE,supe rcnhcal fluidextraction)技术提取咖啡因以来,这方法已在食品、香料、农业等领域的分离提取上得到迅速广泛的应用。超临界流体萃取法利用超临界流体在临界压力和临界温度以上具有的特异增加的溶解性能作为溶剂,从液体或固体基体中提取出特定成分,以达到提取分离目的,能快速、高效地从固体样品中分离出待测物。超临界流体对有机化合物的溶解度的增加非常惊人,般能增加几个数量级。
虽然超临界流体的溶剂效应普遍存在,但实际操作中,由于要考虑溶解度、选择性、临界点数据以及化学反应的可能性等系列因素,适合作为超临界提取的溶剂并不多。常用的超临界流体有:CO2、NH3、乙烯、乙烷、丙烯、丙烷和水等。在各超临界流体中以CO2最受关注,它具有密度大、溶解能力强、传质速率高、便宜易得、无毒、易从提取产物中分离等优点,同时CO2的临界压力适中,分离过程可在接近于室温条件下进行(临界温度31℃)。因此,当前绝大部分超临界流体提取都是以CO2为溶剂。采用CO2提取,特别适于处理烃类及非极性酯类化合物,如醚、酯和酮等。但是,如果样品分子中含有极性基团,则需要在体系中添加助溶剂,以增加对极性物质的溶解能力。
固相微萃取技术
固相微萃取是一种在固相萃取基础上发展起来的前处理技术,1989年由加拿大Waterloo大学的Pawl iszyn等人首次提出,与液液萃取或固相萃取相比,具有操作时问短、样品量少、无需萃取溶剂、适于分析挥发性和非挥发性物质、重现性好等优点,常作为气谱(GC)或高效液相色谱(HPLC)检测的前处理方法。
SPME是利用固相提取的方式实现对样品的分离和净化,但所用的固相材料及其分离机制不同。SPME法不是将待测物全部分离出来,而是通过待测物在样品与固相涂层之问的平衡来达到分离目的。将涂有吸着剂的玻璃纤维浸入样品中,样品中的待测物会通过扩散原理被吸附在吸着剂上,当吸着作用达到平衡后将玻璃纤维取出,通过加热或溶剂洗脱使待测物解吸,然后用GC~HPLC进行分析测定。待测物的吸着量与样品中待测物的原始浓度成正比关系,因此可以进行定量分析。
SPME可分为3种,一是直接法,二是顶空法,三是膜法。直接法是将涂渍纤维直接插入样品中,对待测物进行提取,适用于气体、液体样品的分析。顶空法是将表面涂渍纤维置于样品的顶端空问提取,不与样品直接接触,是根据气相中的待测物与涂层平衡分配而开发的
种顶空固相提取技术,适合于各种基体的样品,包括大气、水、土壤、动植物组织中挥发和半挥发性物质的分析。膜法是将石英纤维放在经过微波萃取及膜处理过的样品中,主要用于难挥发性复杂样品萃取。
对SPME过程的优化主要考虑提取用的纤维(吸着剂)类型、提取时问、离子强度、基体有机质及溶剂的含量、以及解吸温度和时问等因素。最早的涂渍纤维是用聚二甲基硅氧烷和聚丙烯酸脂(polyacrylate,PA)做吸着剂,现在又有聚乙二醇二乙烯基苯(ca rbowaxdivinylbenzene,CW DVB)等涂渍纤维面市,但它们存在稳定性问题,使用条件要求较高。涂层厚度可根据需要调节,涂层越厚固相吸附量越大,可提高检测灵敏度,但涂层太厚则挥发性有机物进入固相层达到平衡的时问越长,分析速度越慢。样品中加价或二价无机盐(如NaCl或Na2SO。)有利提高提取效率,但高浓度的盐对纤维涂层的稳定性有影响,
般认为低于20%的浓度最合适。SPME多在室温下操作,但有时为提高提取效率将温度升至60℃左右。
sPME操作简便、速度快,一般只需15min(固相提取需1h,而液液提取需4~18h):所需样品量少,所用纤维价格便宜且能重复使用(可用50次以上):其萃取过程使用支携带方便的萃取器,特别适于野外的现场取样分析,也易于进行自动化操作,可在任何型号的气相色谱仪上直接进样。随着固相新涂层的不断推出,如离子交换涂层(无机物提取)及生物亲和型涂层(生物样品提取),其应用范围将日益扩大。
吹扫捕集样品前处理技术
吹扫捕集技术适用于从液体或固体样品中萃取沸刺氐于200℃、溶解度小于2%的挥发性或半挥发性有机物。吹扫捕集法对样品的前处理无需使用有机溶剂,对环境不造成二次污染,而且具有取样量少、富集效率高、受基体干扰小及容易实现在线检测等优点,美国EPA 601、602、603、624、501.1、524.2等标准方法均采用了吹扫捕集技术。随着商业化吹扫捕集仪器的广泛使用,吹扫捕集法在挥发性和半挥发性有机化合物分析、有机金属化合物的形态分析中起着越来越重要的作用。
微波辅助提取技术
微波能最早于70年代被用于分析化学的样品处理。1986年,匈牙利学者报道了将微波能应用于分析试样制备的新方法——微波辅助提取法(MAE,microwave assisted extraction)。MAE的 原理是利用微波能强化溶剂提取效率,使待测物从固体或半固体的样品基体中被分离出来。微波辅助提取法具有快速、溶剂用量少结果重现性好等优点,适用于易挥发物质的提取,且可同时进行多个样品的提取。
微波辅助提取法是在个不吸收微波的封闭容器内进行的,样品内部的温度(高出周围提取溶剂沸点几倍)和体系压力(般10-20atm)都较高。由于在密闭容器中,被提取样品与溶剂直接接触,只要容器能承受得了压力,就可以通过改变溶剂的混合比而在高压下将温度升得很高,使农药的溶解度增大,从而获得高提取率。该方法是由密闭容器中酸消解样品和固液提取两种技术组合演变而来的,能在短时间内完成多种组分的提取。
微波提取装置目前已自动化,可自动控制提取温度、压力和时问等。但提取完成后,需等待提取溶剂冷却,然后倒出溶剂,进行离心或过滤等手工操作。微波提取目前主要用于固体样品的处理。
快速溶剂提取技术
目前已有的溶剂提取法等都有溶剂用量大、提取时问长和提取效率不够高等特点,且不易实现自动化操作。快速溶剂提取(AsF,accelerated solventextraction)是由Bruce E Richter等提出的种全自动提取技术。该法适用于固体和半固体样品的制备,仅用极少的溶剂,利用升高的温度加快解析动力达到加速提取的目的。在高温和高压下提取的时问从传统的溶剂提取的数小时降低到以分钟计,极大地减少了样品制备的繁琐操作,已被美国EDA确定为环境、食品和其他固体、半固体样品的标准提取方法。
快速溶剂提取的步骤是,将样品置于不锈钢提取池内,提取池加热至50~200℃,通过泵入溶剂使池内工作压力达到100atm以上。样品接收池与提取池相连,通过静压阀定期将提取池内溶剂释放到接收池内,提取池内的压力同时得到缓解。经过静态提取5~15min后,打开静压阀,用脉冲氮气将新鲜溶剂导入提取池冲洗残余的提取物,利用该法每提取10g样品约需15mL溶剂,每个样品的提取时问般少于20min。
快速溶剂提取可用于农药、多环芳烃、多氧联苯及碱、中、酸性化合物的提取,但对于水果和蔬菜等富含水分的样品,样品中通常需要加入硅藻土,以减少水分产生的影响。
样品前处理是食品分析检测工作的瓶颈。一个完整的样品分析过程包括样品采集、样品前处理、分析测定、数据处理和报告结果5个部分,其中样品处理所需的时问约占整个分析时问的2/3。而且,前处理效果的好坏直接影响检测结果,因为样品被玷污或因吸附、挥发等造成的损失,往往使分析结果失去准确性,甚至得出错误结论。
近年来,提取净化等检测前处理技术不断发展,许多优秀的样品制备新技术争相出现。这些新技术的共同特点是节省时问、减轻劳动强度、节省溶剂、减少样品用量、提取或净化效率及自动化水平高。目前已报道的新技术有很多,但较有应用前景,且已有定应用的新技术主要有:超临界流体萃取技术、固相微萃取技术、吹扫捕集技术、微波辅助萃取技术、快速溶剂提取技术等。超临界流体萃取技术
物质处于临界温度和临界压力以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液态性质,同时还保留气体性能,这种状态的流体称为超临界流体(supercritIcaIfluid)。超临界流体既具有液体对溶质有比较大的溶解度的特点,又具有气体易于扩散和运动的特性,传质速率高于液相过程。更重要的是在临界点附近,压力和温度的微小变化都可以引起流体密度的很大变化。因此,可以利用压力、温度的变化来实现提取和分离过程。
自从Zosel首次报道应用超临界流体萃取(SFE,supe rcnhcal fluidextraction)技术提取咖啡因以来,这方法已在食品、香料、农业等领域的分离提取上得到迅速广泛的应用。超临界流体萃取法利用超临界流体在临界压力和临界温度以上具有的特异增加的溶解性能作为溶剂,从液体或固体基体中提取出特定成分,以达到提取分离目的,能快速、高效地从固体样品中分离出待测物。超临界流体对有机化合物的溶解度的增加非常惊人,般能增加几个数量级。
虽然超临界流体的溶剂效应普遍存在,但实际操作中,由于要考虑溶解度、选择性、临界点数据以及化学反应的可能性等系列因素,适合作为超临界提取的溶剂并不多。常用的超临界流体有:CO2、NH3、乙烯、乙烷、丙烯、丙烷和水等。在各超临界流体中以CO2最受关注,它具有密度大、溶解能力强、传质速率高、便宜易得、无毒、易从提取产物中分离等优点,同时CO2的临界压力适中,分离过程可在接近于室温条件下进行(临界温度31℃)。因此,当前绝大部分超临界流体提取都是以CO2为溶剂。采用CO2提取,特别适于处理烃类及非极性酯类化合物,如醚、酯和酮等。但是,如果样品分子中含有极性基团,则需要在体系中添加助溶剂,以增加对极性物质的溶解能力。
固相微萃取技术
固相微萃取是一种在固相萃取基础上发展起来的前处理技术,1989年由加拿大Waterloo大学的Pawl iszyn等人首次提出,与液液萃取或固相萃取相比,具有操作时问短、样品量少、无需萃取溶剂、适于分析挥发性和非挥发性物质、重现性好等优点,常作为气谱(GC)或高效液相色谱(HPLC)检测的前处理方法。
SPME是利用固相提取的方式实现对样品的分离和净化,但所用的固相材料及其分离机制不同。SPME法不是将待测物全部分离出来,而是通过待测物在样品与固相涂层之问的平衡来达到分离目的。将涂有吸着剂的玻璃纤维浸入样品中,样品中的待测物会通过扩散原理被吸附在吸着剂上,当吸着作用达到平衡后将玻璃纤维取出,通过加热或溶剂洗脱使待测物解吸,然后用GC~HPLC进行分析测定。待测物的吸着量与样品中待测物的原始浓度成正比关系,因此可以进行定量分析。
SPME可分为3种,一是直接法,二是顶空法,三是膜法。直接法是将涂渍纤维直接插入样品中,对待测物进行提取,适用于气体、液体样品的分析。顶空法是将表面涂渍纤维置于样品的顶端空问提取,不与样品直接接触,是根据气相中的待测物与涂层平衡分配而开发的
种顶空固相提取技术,适合于各种基体的样品,包括大气、水、土壤、动植物组织中挥发和半挥发性物质的分析。膜法是将石英纤维放在经过微波萃取及膜处理过的样品中,主要用于难挥发性复杂样品萃取。
对SPME过程的优化主要考虑提取用的纤维(吸着剂)类型、提取时问、离子强度、基体有机质及溶剂的含量、以及解吸温度和时问等因素。最早的涂渍纤维是用聚二甲基硅氧烷和聚丙烯酸脂(polyacrylate,PA)做吸着剂,现在又有聚乙二醇二乙烯基苯(ca rbowaxdivinylbenzene,CW DVB)等涂渍纤维面市,但它们存在稳定性问题,使用条件要求较高。涂层厚度可根据需要调节,涂层越厚固相吸附量越大,可提高检测灵敏度,但涂层太厚则挥发性有机物进入固相层达到平衡的时问越长,分析速度越慢。样品中加价或二价无机盐(如NaCl或Na2SO。)有利提高提取效率,但高浓度的盐对纤维涂层的稳定性有影响,
般认为低于20%的浓度最合适。SPME多在室温下操作,但有时为提高提取效率将温度升至60℃左右。
sPME操作简便、速度快,一般只需15min(固相提取需1h,而液液提取需4~18h):所需样品量少,所用纤维价格便宜且能重复使用(可用50次以上):其萃取过程使用支携带方便的萃取器,特别适于野外的现场取样分析,也易于进行自动化操作,可在任何型号的气相色谱仪上直接进样。随着固相新涂层的不断推出,如离子交换涂层(无机物提取)及生物亲和型涂层(生物样品提取),其应用范围将日益扩大。
吹扫捕集样品前处理技术
吹扫捕集技术适用于从液体或固体样品中萃取沸刺氐于200℃、溶解度小于2%的挥发性或半挥发性有机物。吹扫捕集法对样品的前处理无需使用有机溶剂,对环境不造成二次污染,而且具有取样量少、富集效率高、受基体干扰小及容易实现在线检测等优点,美国EPA 601、602、603、624、501.1、524.2等标准方法均采用了吹扫捕集技术。随着商业化吹扫捕集仪器的广泛使用,吹扫捕集法在挥发性和半挥发性有机化合物分析、有机金属化合物的形态分析中起着越来越重要的作用。
微波辅助提取技术
微波能最早于70年代被用于分析化学的样品处理。1986年,匈牙利学者报道了将微波能应用于分析试样制备的新方法——微波辅助提取法(MAE,microwave assisted extraction)。MAE的 原理是利用微波能强化溶剂提取效率,使待测物从固体或半固体的样品基体中被分离出来。微波辅助提取法具有快速、溶剂用量少结果重现性好等优点,适用于易挥发物质的提取,且可同时进行多个样品的提取。
微波辅助提取法是在个不吸收微波的封闭容器内进行的,样品内部的温度(高出周围提取溶剂沸点几倍)和体系压力(般10-20atm)都较高。由于在密闭容器中,被提取样品与溶剂直接接触,只要容器能承受得了压力,就可以通过改变溶剂的混合比而在高压下将温度升得很高,使农药的溶解度增大,从而获得高提取率。该方法是由密闭容器中酸消解样品和固液提取两种技术组合演变而来的,能在短时间内完成多种组分的提取。
微波提取装置目前已自动化,可自动控制提取温度、压力和时问等。但提取完成后,需等待提取溶剂冷却,然后倒出溶剂,进行离心或过滤等手工操作。微波提取目前主要用于固体样品的处理。
快速溶剂提取技术
目前已有的溶剂提取法等都有溶剂用量大、提取时问长和提取效率不够高等特点,且不易实现自动化操作。快速溶剂提取(AsF,accelerated solventextraction)是由Bruce E Richter等提出的种全自动提取技术。该法适用于固体和半固体样品的制备,仅用极少的溶剂,利用升高的温度加快解析动力达到加速提取的目的。在高温和高压下提取的时问从传统的溶剂提取的数小时降低到以分钟计,极大地减少了样品制备的繁琐操作,已被美国EDA确定为环境、食品和其他固体、半固体样品的标准提取方法。
快速溶剂提取的步骤是,将样品置于不锈钢提取池内,提取池加热至50~200℃,通过泵入溶剂使池内工作压力达到100atm以上。样品接收池与提取池相连,通过静压阀定期将提取池内溶剂释放到接收池内,提取池内的压力同时得到缓解。经过静态提取5~15min后,打开静压阀,用脉冲氮气将新鲜溶剂导入提取池冲洗残余的提取物,利用该法每提取10g样品约需15mL溶剂,每个样品的提取时问般少于20min。
快速溶剂提取可用于农药、多环芳烃、多氧联苯及碱、中、酸性化合物的提取,但对于水果和蔬菜等富含水分的样品,样品中通常需要加入硅藻土,以减少水分产生的影响。