论文部分内容阅读
Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity.The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO,22.5% H2 and 49% N2 at a thermal power of 34 kW.Results indicate that increasing the air swirl intensity with the same fuel,swirl intensity flame structures showed little difference except a small reduction of flame length;but also,with the same air swirl intensity,fuel swirl intensity showed great influence on flame shape,length and reaction zone distribution.Therefore,compared with air swirl intensity,fuel swirl intensity appeared a key effect on the flame structure for the model combustor.Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity,while a much compacter flame structure with a single,stable and uniform reaction zone distribution was found at large fuel-air swirl intensity.It means that larger swirl intensity leads to efficient,stable combustion of the syngas diffusion flame.
Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures saw little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution.Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor.Instantaneous OH- PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.