论文部分内容阅读
自主式水下机器人(AUV)是应用于复杂海洋环境中的高智能化无人装备,其需要具备良好的环境感知能力进行自主导航,包括水下目标识别能力。随着人工智能的高速发展,卷积神经网络作为图像处理领域的深度学习架构,在图像特征提取和图像识别上有着强大的性能和卓越的优势。本文利用卷积神经网络,实现了自主式水下机器人水下目标的自主识别。同时,通过采用三段式全连接方式和增加卷积层深度的方式对卷积神经网络进行进一步改进,提高了卷积神经网络的训练速度、准确率和泛化能力。