京津冀城市群低碳转型的微观主体驱动机理分析与建模

来源 :环境保护 | 被引量 : 0次 | 上传用户:dlfly2011
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于“双碳”目标,阐述了京津冀城市群现状及其在国家经济发展和碳排放中的重要地位,分析了京津冀城市群的特征及其在低碳转型中的引领示范作用,探索了京津冀城市群低碳经济转型与微观主体驱动融合机理,构建了京津冀城市群低碳经济转型基础模型和微观主体驱动下京津冀城市群低碳经济转型模型,并将基于Agent建模与投入产出相结合,采用自上而下和自下而上相结合的混合建模技术,为“双碳”目标下京津冀城市群低碳经济转型问题提供一个完整的解决方案.
其他文献
以Fe2O3、正硅酸乙酯(TEOS)和N-(三甲氧基硅丙基)乙二胺三乙酸钠盐(EDTA-TMS)为原料,采用物理浸渍法制备Fe2O3@SiO2-EDTA催化剂,并考察了介质阻挡放电(DBD)协同Fe2O3@SiO2-EDTA催化剂对NO的脱除效果。实验结果表明:TEOS加入量和烘干温度对Fe2O3
以碱处理后的ZSM-5为催化剂载体,采用等体积浸渍法负载Zn和Co金属活性组分,制备了Zn-Co/ZSM-5催化剂,运用XRD、XRF、BET、SEM、FTIR等技术对其进行了表征,并将其用于催化臭氧氧化处理精细化工废水。结果表明,在550℃下焙烧制得的Zn-Co/ZSM-5催化剂的催化性能较好,具有良好的孔道结构,活性组分在ZSM-5分子筛表面均匀分布。当废水中臭氧通量为2.0 L/min、臭氧质量浓度为4 mg/L、Zn-Co/ZSM-5投加量为0.4 g/L时,60 min后废水的COD去除率可达9
研究了植物源表面活性剂皂草苷和微生物源表面活性剂槐糖脂及其复配体系对苯并[a]芘的增溶效果以及对污染土壤中苯并[a]芘的洗脱效果。实验结果表明:在α=0.4、ρ=2000 mg/L、pH=5、温度30℃的条件下,皂草苷-槐糖脂溶液的增溶效果最佳;不同表面活性剂对模拟污染土壤中苯并[a]芘的洗脱效果依次为皂草苷-槐糖脂>槐糖脂>皂草苷>Tween 80;在α=0.4、ρ=2000 mg/L、温度25℃、振荡速率200 r/min的条件下振荡4
以500℃下制备的稻草秸秆生物炭为土壤修复剂,通过60 d的培养实验研究了Cd-Pb复合污染土壤的固化稳定化修复过程,并运用元素分析、FTIR等方法对生物炭的基本性质进行了表征。表征结果显示,稻草秸秆生物炭呈碱性,比表面积较大,拥有较好的芳香性,不易在环境中降解。实验结果表明,施加稻草秸秆生物炭后,污染土壤中的Cd有效态含量从47.63 mg/kg降至20.38 mg/kg,Pb有效态含量从89.52 mg/kg降至22.73 mg/kg,分别降低了57.1%和74.6%。同时,生物炭的施加还显著减少了土
以竹屑为基质制备了水热炭(HC),通过NaOH溶液和ZnCl2溶液改性分别制备了改性水热炭OHHC和ZHC,并将两种改性水热炭耦合制成复合水热炭MHC。考察了水热炭投加量和初始溶液pH对溶液中Cr(Ⅵ)和Cd(Ⅱ)去除率的影响。并通过吸附动力学和等温吸附曲线,探究吸附机理。实验结果表明:ZHC的芳香性增高,比表面积增大;OHHC的含氧官能团数量增多,孔径增大。在初始溶液pH=4、MHC投加量为16 g/L的最佳条件下,Cr(Ⅵ)和Cd(Ⅱ)去除率分别达98.98%和81.38%。水热
采用磷酸铵镁(MAP)沉淀和絮凝法联合处理高浓度氨氮废水,通过单因素法和正交实验法考察了各因素对氨氮去除效果的影响。从聚合氯化铝(PAC)、聚合氯化铁、聚硅硫酸铁铝中筛选出PAC作为絮凝剂。采用正交实验得到最佳工艺条件:n(Mg2+)∶n(PO3-4)∶n(NH+4)为1.3∶1.3∶1,反应pH为9.2,PAC投加量为36.1 mg/L。实验因素对氨氮去除率的影响程度从大到小依次为磷酸盐投加量、
以三甲基氯硅烷(TMCS)为改性剂,采用液相浸渍和热处理相结合的方式对活性炭进行疏水改性,并采用动态吸附法结合表征技术探究了其在高湿环境下对甲苯的吸附性能和机理。液相浸渍TMCS可有效提高活性炭的疏水性,但会严重堵塞孔道,通过热处理进一步提高疏水性的同时可有效恢复堵塞孔道。改性前后活性炭的甲苯穿透曲线均符合Yoon-Neslon模型。活性炭的疏水改性增强了甲苯与活性炭疏水表面的化学键合作用力,有效提高了对甲苯的吸附选择性。化学吸附是高湿环境下甲苯吸附性能显著提升的主要机制。
采用超临界氨水改性活性炭(AC),考察了改性AC对CO2的吸附性能,表征了改性前后AC的表面结构和化学性质。实验结果表明,改性温度为150℃制备的改性AC具有最高的CO2吸附量,25℃时吸附量从改性前的0.979 mmol/g增至1.291 mmol/g,增加了约30%。表征结果显示:改性后AC表面成功负载了含氮基团;改性后AC的BET比表面积减小,且随着改性温度的升高,比表面积减小量增大。改性后AC吸附CO2的过程兼有物理吸附和化学吸附,
油气行业在国家碳达蜂、碳中和目标下需要完善清洁低碳、节能高效的能源供应体系,减污降碳将成为行业绿色转型的重要手段.针对行业高质量发展需求,建议建立源头绿色化、过程清洁化、废物资源化的融合发展机制,明晰石油石化增储上产新领域的环境影响和控制机制,加大碳捕碳捕集、利用与封存技术的科技攻关,加快完善甲烷排放检测、核算与核查体系,扩大甲烷减排技术的应用规模,研发下一代低成本高效甲烷控制技术,为能源行业实现碳达峰、碳中和提供技术示范.
以丙烯酸乙酯(EA)和N-(3-二甲氨基丙基)甲基丙烯酰胺(DPM)为原料,通过乳液聚合制备了共聚物P(EA-DPM),优化了其合成条件,并评价了其对油田聚合物驱采油污水(含聚污水)的气浮除油性能。最佳合成条件为:m(EA)∶m(DPM)=1∶1,总单体加入量(EA和DPM总量在反应体系中的质量分数)20%,乳化剂加入量(乳化剂在纯水中的质量浓度)1.5 g/L,引发剂加入量(引发剂占总单体的质量分数)0.1%,反应温度65℃,反应时间8 h。最佳气浮除油条件为:气浮温度50℃,P(EA-DPM)乳状液用