论文部分内容阅读
依据高分辨率遥感影像的特点,结合深圳市QUICKBIRD数据提出一种基于多尺度分割的对象级遥感分类方法。文中首先利用分形网络演化法(FNEA)进行多尺度图像分割,获取对地表实体更具代表性的图像对象,然后利用对象所包含的光谱、空间特征来确定地物识别中可能要用到的各种特征参数,最后通过构建语义结构实现了研究区地物的逐级分层分类。研究结果表明,本文所采取的方法比传统方法在分类精度上有了明显的提高,为高分辨率遥感影像的信息提取提供了新的技术途径。