论文部分内容阅读
针对当前基于机器学习的早期阿尔茨海默病(AD)诊断中有标记训练样本不足的问题,提出一种基于多模态特征数据的权值分布稀疏特征学习方法,并将其应用于早期阿尔茨海默病的诊断.具体来说,该诊断方法主要包括两大模块:基于权值分布的Lasso特征选择模型(WDL)和大间隔分布分类机模型(LDM).首先,为了获取多模态特征之间的数据分布信息,对传统Lasso模型进行改进,引入权值分布正则化项,从而构建出基于权值分布的Lasso特征选择模型;然后,为了有效地利用多模态特征之间的数据分布信息,以保持多模态特征之间的互补性,