Trimetallic nanostructures and their applications in electrocatalytic energy conversions

来源 :能源化学 | 被引量 : 0次 | 上传用户:long5139
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The advancement and growth of nanotechnology lead to realizing new and novel multi-metallic nanos-tructures with well-defined sizes and morphology,resulting in an improvement in their performance in various catalytic applications.The trimetallic nanostructured materials are synthesized and designed in different architectures for energy conversion electrocatalysis.The as-synthesized trimetallic nanostruc-tures have found unique physiochemical properties due to the synergistic combination of the three dif-ferent metals in their structures.A vast array of approaches such as hydrothermal,solvothermal,seed-growth,galvanic replacement reaction,biological,and other methods are employed to synthesize the trimetallic nanostructures.Noteworthy,the trimetallic nanostructures showed better performance and durability in the electrocatalytic fuel cells.In the present review,we provide a comprehensive overview of the recent strategies employed for synthesizing trimetallic nanostructures and their energy-related applications.With a particular focus on hydrogen evolution,alcohol oxidations,oxygen evolution,and others,we highlight the latest achievements in the field.
其他文献
Silica nanosheets (SN) derived from natural vermiculite (Verm) were successfully incorporated into polyethersulfone-polyvinylpyrrolidone (PES-PVP) polymer to fabricate high-temperature proton exchange membranes (HT-PEMs).The content of SN filler was varie
The introduction of spinel phase to form the layered-spinel structure (LSS) is an effective way to improve the electrochemical performance of Li-and Mn-rich layered oxides (LMR).But is this structure universal for all LMR systems?In this work,different Mn
Potassium-ions batteries (PIBs) are attracting increasing attention as up-and-coming youngster in large-scale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode mat
Metal phosphides have shown great potential for potassium-ion batteries because of their high theoret-ical specific capacity.Nevertheless,most of the metal phosphide anodes are plagued by rapid capacity decay (caused by the large volume changes during the
Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP composite nanoarray using bimetallic metal-
Lithium metal batteries are considered as high energy density battery systems with very promising pro-spects and have been widely studied.However,The uncontrollable plating/stripping behavior,infinite volume change and dendrites formation of lithium metal
In this work,we have successfully prepared a novel separator modified with N,S co-doped carbon frame-work (named NSPCF) with confined CoS2 nanoparticles and rooted carbon nanotubes material (named NSPCF@CoS2) to apply for high-performance Lithium-Sulfur b
Propane dehydrogenation (PDH),employing Pt-or Cr-based catalysts,represents an emerging industrial route for propylene production.Due to the scarcity of platinum and the toxicity of chromium,alternative PDH catalysts are being pursued.Herein,we report the
Electrolyte chemistry offers the opportunity to regulate the solid electrolyte interphase (SEI) and Li+ sol-vation,which is considered to be crucial to the growth of lithium crystals for safe lithium metal batteries(LMBs).Structurally tunable characterist
Developing highly active and cost-effective electrocatalysts for enhancing the hydrogen evolution reac-tion (HER) and oxygen evolution reaction (OER) is a significant challenge for overall water splitting.Sulfur-incorporated nickel iron (oxy)hydroxide (S-