论文部分内容阅读
植物叶片图像的采集过程中,由于自然环境或成像条件的影响,特别是夜间,采集到的图像大多带有椒盐噪声,造成图像质量下降。很多植物叶片含有丰富的叶脉,被噪声污染不利于后续的表型分析、图像分割等。椒盐噪声密度较小时,中值滤波降噪效果较好,但在噪声污染严重时滤波方法也无法有效去噪。针对这一问题,提出了基于概率PCA的图像修复模型。一幅光滑的不含噪图像通常可认为服从高斯分布,概率PCA能有效地提取描述这幅图像中的主要信息,通过估计模型参数重构因噪声引起的数据缺失,从而达到图像修复的目的。但是当噪声的缺失像素点聚