Facile one-pot hydrothermal method to prepare Sn(Ⅱ) and N co-doped TiO2 photocatalyst for water spli

来源 :稀有金属(英文版) | 被引量 : 0次 | 上传用户:tchrt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this paper,a visible light-responsive Sn2+and N co-doped TiO2 photocatalyst was prepared by facile one-pot hydrothermal method.All as-prepared samples were characterized in detail by a series of characterization approaches.The results showed that the Sn2+ and N ele-ments were co-doped into TiO2,while the catalyst still maintains anatase crystal structure and gets irregular little nanocluster in diameter of 9-10 nm with higher specific surface area.The absorption edge of Sn2+ and N co-doped TiO2 extends to the visible light region.Compared with Sn2+-doped TiO2 and N-TiO2,the absorption edges have obvious red-shift of about 50 and 70 nm,respectively.The synergistic effect of O 2p-N 2p and O 2p-Sn 5s hybridization to form impurity levels is the main reason for the red-shift.The hydrogen production performance of the Sn2+ and N co-doping TiO2 (n(N)/n(Ti)=1) catalyst reached the maximum value of 0.37 mmol·h-1·g-1 under visible light,which is higher than that of N-doped TiO2 and Sn2+-doped TiO2 singly.This result is due to the wider visible light region-responsive ability of Sn2+ and N co-doped into TiO2.Furthermore,mild hydrothermal methods will not make the Sn2+ oxidized to Sn4+,which make the catalysts still maintain high photocatalytic performance.This work provides a simple and mild method for the preparation of dual-element co-doped TiO2 with high crystallinity,excellent performance and broad application prospects.
其他文献
High entropy alloys (HEAs) containing five or more equimolar components have shown promising cat-alytic performance due to their unique chemical and mechanical properties.However,it is still challenging to prepare scalable and efficient nanoporous HEAs as
Based on the excellent sodium ion mobility of sodium superionic conductor structures,Na3V2(PO4)3 materials have become promising cathode materials in sodium-ion batteries (SIBs).However,inadequate elec-tronic transport of Na3V2(PO4)3 limits the cycling st
Aqueous rechargeable zinc-ion battery (ZIB) is considered to be a potential energy storage system for large-scale applications due to its environmental friendli-ness,high safety,and low cost.However,it remains challenging to develop suitable cathode mater
The conversion of CO2 into CO,CH4 and other hydrocarbons through solar energy can alleviate the energy shortage problem.We design a novel photocatalyst with S defects CuIn5S8@MoSe2 hollow structure.The interlayer-expanded MoSe2 can increase the adsorption
Graphitic carbon nitride with nitrogen vacancies(NV-g-C3N4) as a photocatalyst has been studied in solar-driven energy conversion.However,expensive and rare noble metal co-catalysts such as Pt or Pd are required in the photocatalytic H2 evolution.Conseque
Developing efficient electron transport layers (ETLs) along with proper interface engineering is crucial to achieve high-performance perovskite solar cells (PSCs).Herein,a photo-assisted doping strategy was developed to modify SnO2 ETLs with Cl-for effici
期刊
The composite of zeolitic imidazolate frame-works (ZIF-67) and ordered macroporous carbon (OMC)was successfully synthesized via in situ growth from the OMC matrix.The ZIF67-OMC composite was verified by scanning electron microscopy (SEM) and transmission
Inorganic photocatalysts have been regarded as a promising candidate in the domain of tumor photody-namic therapy (PDT) due to their inspirational photocat-alytic activity.In this study,a Bi4O5Br2 photocatalyst was synthesized and it exhibited effective p
The replacement of liquid electrolyte with solid electrolyte can significantly improve the safety and power/energy density of lithium batteries.70Li2S-30P2S5 is one of the most promising solid electrolytes with high con-ductivity for solid-state batteries
Further application of organic quinone cathodes is restricted because they are inherent in poor conductivity and tend to dissolve in aprotic electrolytes.Salinization can work on the strong solubility of quinones.Herein,the ortho-disodium salt of tetrahyd