论文部分内容阅读
美国国家天气局已发展了一种飓风暴潮模式,即SLOSH模式,用其计算飓风暴潮,给定风暴资料,做为输入参数。这个数值模式把动力海岸线、由风暴引起的洪水漫滩、次网格特征具体化,如障碍物、障碍物之间的缺口、海水沿可变宽度河道的一维流动。SLOSH模式已被用于墨西哥湾沿岸美国的大部分地区和大西洋海岸常遭飓风袭击的区域。本文提供了模式使用的情况和对于飓风暴潮预报的某些局限性。SLOSH模式应用的一些特例取自1985年Elena飓风。 SLOSH模式除了用于实时风暴潮预报外,还广泛用于飓风防汛疏散计划。这个模式用几百个假想的飓风进行运算,是依据区域气候学来选择所计算的飓风,对每个预想的风暴,模式计算出淹水范围,把这些淹水类型结合起来,可帮助确定一个区域遭飓风袭击的程度。同时,模式计算的风,可帮助规划人员确定疏散时路线,是否由于大风而阻塞。联邦和地方政府机构把这些息信与人口研究和道路能力估计结合起来,制定出一种综合的疏散计划。这种计划的成果之一是“疏散时间”——当飓风来临时沿海地区为了安全疏散需要提前撤离的时间。
The National Weather Service has developed a hurricane surge model, the SLOSH model, that uses it to calculate hurricane surges and gives storm data as input parameters. This numerical model embodies dynamical coastlines, storm floodplain floodplains, and subgrid features such as obstacles, gaps between obstacles, and one-dimensional flow of seawater along variable-width rivers. The SLOSH model has been used for hurricane-hit areas in most parts of the Gulf Coast of the Gulf of Mexico and the Atlantic coast. This article provides information on the patterns used and some limitations of hurricane surge forecasting. Some special cases of SLOSH mode application are taken from 1985 Elena. In addition to being used for real-time storm surge forecasting, the SLOSH model is also widely used in hurricane flood control evacuation plans. Using hundreds of hypothetical hurricanes, this model selects the calculated hurricane based on regional climatology, calculates the extent of flooding for each expected storm and pattern, and combines these types of flooding to help identify one The extent of hurricane attacks in the area. At the same time, the winds of pattern calculations can help planners determine whether routes are evacuated and blocked by strong winds. Federal and local government agencies have combined these messages with population studies and road capacity estimates to develop a comprehensive evacuation plan. One of the outcomes of such a plan is “evacuation time” - the time needed for early evacuation of coastal areas for safe evacuation when a hurricane comes.