论文部分内容阅读
Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer(EPDM)as the absorbent and matrix,rubber radar absorbing materials(RAM)were prepared.Effects of the carbonyl iron volume fraction and the thickness of the RAM on the microwave absorption properties in the frequency range of 2.6-18GHz were studied,and a mathematical analysis was made using the electromagnetic theory. The experimental results indicate that the minimum reflectivity of the radar absorbing materials continuously decreases with the increase of the carbonyl iron volume fraction,and the absorption peak also moves towards the low frequency for the same thickness of the RAM.The minimum reflectivity of the 3.0 mm RAM is -21.7dB at 3.5 GHz when the volume fraction of carbonyl iron is 45%.The reflectivity of the RAM is not in direct proportional to the thickness of the RAM,when the RAM has the same volume fraction of the carbonyl iron.The reflectivity of the RAM presents a regular trend at a given carbonyl iron volume fraction in the frequency range of 2.6-18 GHz.With the increase of the thickness,the maximum absorption peak moves towards low frequency band,the minimum reflectivity firstly decreases and then increases,and the absorption bandwidth for reflectivity<-10 dB firstly increases and then decreases.The microwave absorption properties of the RAM are determined by the thickness and the composition of the radar absorbing materials. Theoretical analysis indicates that the reflectivity of the RAM is determined by the matching degree of the air’s characteristic impedance and the input impedance.
Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the thickness of the RAM on the microwave absorption properties in the The experimental results that made the minimum reflectivity of the radar absorbing materials are decreasing with the increase of the carbonyl iron volume fraction, and the absorption peak also moves toward the low frequency for the same thickness of the RAM. The minimum reflectivity of the 3.0 mm RAM is -21.7 dB at 3.5 GHz when the volume fraction of carbonyl iron is 45%. The reflectivity of the RAM is not in direct proportional to the thickness of the RAM, when the RAM has the same volume fraction of the carbonyl iron. The reflectivity of the RAM presents a regular trend at a given carbonyl iron volu The fraction of the increase of the thickness, the minimum refraction first shift and then increases, and the absorption bandwidth for reflectivity <-10 dB. and then decreasing microwave absorption properties of the radar are determined by the thickness and the composition of the radar absorbing materials. Theoretical analysis indicates that the reflectivity of the RAM is determined by the matching degree of the air’s characteristic impedance and the input impedance.