外宣视角下传统美食名称翻译策略——以西北地区为例

来源 :今古文创 | 被引量 : 1次 | 上传用户:haivi2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统美食名称翻译一直是外宣翻译领域的重点,其对传统饮食文化对外传播的影响力不言而喻。然而,目前的传统美食名称翻译仍存在一些问题。西北地区传统美食在中国传统美食中占有重要地位。虽不属于八大菜系,但其涉及人口及民族数量众多,蕴藏不同民族饮食文化的深刻内涵。本文以西北地区传统美食翻译现状为例,结合已有翻译理论,以对外宣传传统美食及文化为目的,探究传统美食翻译策略。
其他文献
沙门菌是一种食源性致病菌,对全球公共健康构成了威胁,造成极大的经济损失。非伤寒沙门菌引起的沙门菌病是一种常见的食源性传染病,对人类和养鸡业影响较大。肠炎沙门菌可诱发动物肠道疾病,而误食被污染的鸡肉或鸡蛋较易导致发病。当前迫切需要一种绿色制剂来防控动物性食品中的沙门菌,尤其是鸡肉和鸡蛋。裂解性噬菌体是最有前景的可靶向防控食源性致病菌的绿色生物防控剂。噬菌体可减少养鸡业生产环境中的致病菌,也可用作生物
学位
κ-卡拉胶是一种天然线性硫酸多糖,主要来源于海洋红藻;κ-卡拉胶的水解产物κ-卡拉胶寡糖,具有良好的生物利用度,表现出了多种生物药理活性。采用生物酶法水解κ-卡拉胶,是制备κ-卡拉胶寡糖的有效技术手段。κ-卡拉胶酶(EC 3.2.1.83)是一类糖苷水解酶,可以专一性的水解κ-卡拉胶,从而选择性制备结构完整、分子量均一的κ-卡拉胶寡糖。κ-卡拉胶酶的开发和利用面临的主要问题是:产生κ-卡拉胶酶的微
学位
自旋交叉配合物具有对外界刺激产生快速响应的特点,可以在单分子水平实现不同自旋稳态之间的切换,在传感和高密度信息存储领域中有潜在应用价值,受到研究者的广泛关注。如何实现对自旋转变配合物的结构可控组装和功能协同调控依然面临诸多挑战。本论文利用三氰构筑单元丰富的组装特性和优良的电子传输能力设计组装自旋交叉化合物,系统研究了分子内金属间电荷转移、辅助配体和分子间协同作用对自旋转变行为的影响。在此基础上,利
学位
大气压沿面放电作为一种低温等离子体产生技术,是产生大面积等离子体的有效方法。沿面放电等离子体具有安全、均匀等优点,并且可以根据被处理物的表面形貌设计电极,在诸多领域有着广阔的应用前景,例如生物医学、农业、食品安全以及环境保护等领域。沿面放电等离子体产生的活性物种在这些应用中起到了关键作用,其中,OH自由基是含水等离子体中氧化性最强的物种之一,在等离子体医学应用中起到了重要作用。本论文采用发射光谱、
学位
射频容性耦合等离子体(Capacitively Coupled Plasmas,CCPs)在刻蚀、沉积、溅射等微电子工艺中具有重要应用,相关的工艺对等离子体参数有不同的要求。如刻蚀中要求几百甚至上千电子伏的高能量的离子轰击以形成陡直的刻蚀槽形貌,而沉积工艺中过高的离子能量则会造成表面材料的损伤。同时,相关工艺中均要求较高的离子通量和等离子体均匀性,以实现良好的工艺效率并达到大面积处理的目的。射频C
学位
自然灾害频发是我国的基本国情,以地震为首的典型自然灾害突发事件由于其突发性、破坏性、难以预测性等特征,给人们带来了不同程度的伤害,也加剧了政府救灾与引导工作的难度。与此同时,微博作为中国最大的社交媒体,已经成为人们发表意见与观点交锋的重要场所,自媒体的发展加快了自然灾害突发事件在互联网上的传播速度,然而一旦对自然灾害突发事件处理不当则会形成网络舆情,触发网民负面情绪,甚至引发次生舆情灾害。我国高度
学位
滑动弧等离子体是一种近年来兴起的、具有高能量效率的大气压非热等离子体,在环境与能源领域具有广阔的应用前景。但对滑动弧等离子体的基础性认识目前非常缺乏,尤其是针对环境与能源应用的反应体系。本论文设计了一种直流恒流电源供电的磁驱滑动弧模型反应器,开展了磁驱滑动弧等离子体放电模式及其CO2加氢还原反应的研究。主要研究内容和研究结果如下:1.在磁驱滑动弧等离子体放电模式的研究中,观测到三种放电模式:(1)
学位
高能量粒子物理的研究是磁约束聚变领域的一个重要课题,因为在高能量粒子慢化的过程中不仅可以加热等离子体,而且还会激发出各种不稳定性。高能量粒子可以通过射频波、中性束注入等辅助加热手段产生,也可以是氘氚聚变反应的产物α粒子。在托卡马克等离子体中,高能量粒子或α粒子与内扭曲模、鱼骨模等不稳定模式相互作用,而这些模式又会引起高能量粒子或α粒子的再分布和径向输运,导致高能量粒子和α粒子的损失,降低辅助加热的
学位
在托卡马克运行中,不可避免地会发生等离子体与壁材料相互作用(Plasma Wall Interaction,PWI)。在PWI中,第一类边界局域模(Type I ELM)爆发所释放的热与粒子流会严重损伤等离子体面壁材料(Plasma Facing Materials,PFMs),影响PFMs的结构和性能,缩短其使用寿命。钨因具有熔点高、导热系数高、溅射产率低、氚滞留率低等优点成为托卡马克中最有前景
学位
托卡马克中的撕裂模是一种由电流驱动的宏观磁流体不稳定性,它会破坏平衡磁面并在有理面处形成磁岛结构,这些磁岛又可以作为种子磁岛来驱动新经典撕裂模不稳定性。新经典撕裂模是线性稳定的,但是它会被磁岛内由于压强展平而损失的自举电流所解稳,变得非线性不稳定。由于能量会沿着磁力线快速输运,新经典撕裂模会极大程度地降低托卡马克装置芯部的能量约束水平,同时也是造成等离子体大破裂的主要原因之一。出于经济可行性的考虑
学位