Long-term adenosine A1 receptor activation-induced sortilin expression promotes α-synuclein upregula

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:xubin761
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Prolonged activation of adenosine A1 receptor likely leads to damage of dopaminergic neurons and subsequent development of neuro-degenerative diseases. However, the pathogenesis underlying long-term adenosine A1 receptor activation-induced neurodegeneration remains unclear. In this study, rats were intraperitoneally injected with 5 mg/kg of the adenosine A1 receptor agonist N6-cyclopentylade-nosine (CPA) for five weeks. The mobility of rats was evaluated by forced swimming test, while their cognitive capabilities were evaluated by Y-maze test. Expression of sortilin, α-synuclein, p-JUN, and c-JUN proteins in the substantia nigra were detected by west blot anal-ysis. In addition, immunofluorescence staining of sortilin and α-synuclein was performed to detect expression in the substantia nigra. The results showed that, compared with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg) + CPA co-treated rats, motor and memory abilities were reduced, surface expression of sortin and α-synuclein in dopaminergic neurons was reduced, and total sortilin and total α-synuclein were increased in CPA-treated rats. MN9D cells were incubated with 500 nM CPA alone or in combination with 10 μM SP600125 (JNK inhibitor) for 48 hours. Quantitative real-time polymerase chain reaction analysis of sortilin and α-synuclein mRNA levels in MN9D cells revealed upregulated sortilin expression in MN9D cells cultured with CPA alone, but the combination of CPA and SP600125 could inhibit this expression. Predictions made using Jasper, PROMO, and Alibaba online databases identified a highly con-served sequence in the sortilin promoter that was predicted to bind JUN in both humans and rodents. A luciferase reporter assay of sortilin promoter plasmid-transfected HEK293T cells confirmed this prediction. After sortilin expression was inhibited by sh-SORT1, expression of p-JUN and c-JUN was detected by west blot analysis. Long-term adenosine A1 receptor activation levels upregulated α-synuclein expression at the post-transcriptional level by affecting sortilin expression. The online tool Raptor-X-Binding and Discovery Studio 4.5 prediction software predicted that sortilin can bind to α-synuclein. Co-immunoprecipitation revealed an interaction between sortilin and α-synuclein in MN9D cells. Our findings indicate that suppression of prolonged adenosine A1 receptor activation potently inhibited sor-tilin expression and α-synuclein accumulation, and dramatically improved host cognition and kineticism. This study was approved by the University Committee of Animal Care and Supply at the University of Saskatchewan (approval No. AUP#20070090) in March 2007 and the Animals Ethics Committee of University of South China (approval No. LL0387-USC) in June 2017.
其他文献
期刊
Most animal spinal cord injury models involve a laminectomy, such as the weight drop model or the transection model. However, in clin-ical practice, many patien
期刊
The prefrontal neocortex is involved in many high cognitive functions in humans. Deficits in neuronal and neurocircuitry development in this part of the cerebru
The iron chelator deferoxamine has been shown to inhibit ferroptosis in spinal cord injury. However, it is unclear whether deferoxaminedirectly protects neurons
期刊
Epidemiology and physiopathology of ischemic stroke: Every year, around 15 million of people suffer a stroke event all around the world. Among those, around 6.7
期刊
Intet addiction is associated with an increased risk of suicidal behavior and can lead to brain dysfunction among adolescents. Howev-er, whether brain dysfuncti
Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic. Up to now, none of the well-developed microsurgical treatment option
Spinal cord injury (SCI) population with injury below T10 or injury to the cauda equina region is charac-terized by denervated muscles, extensive muscle atrophy