论文部分内容阅读
提出了模块二维主成分分析(M2DPCA)线性鉴别分析方法。M2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能有效地降低模式原始特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,2DPCA是M2DPCA的特例。在ORL人脸库上试验结果表明,M2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。