Topological properties of non-Hermitian Creutz ladders

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:gaolch011
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We study topological properties of the one-dimensional Creutz ladder model with different non-Hermitian asymmet-ric hoppings and on-site imaginary potentials,and obtain phase diagrams regarding the presence and absence of an energy gap and in-gap edge modes.The non-Hermitian skin effect (NHSE),which is known to break the bulk-boundary corre-spondence (BBC),emerges in the system only when the non-Hermiticity induces certain unbalanced non-reciprocity along the ladder.The topological properties of the model are found to be more sophisticated than that of its Hermitian counter-part,whether with or without the NHSE.In one scenario without the NHSE,the topological winding is found to exist in a two-dimensional plane embedded in a four-dimensional space of the complex Hamiltonian vector.The NHSE itself also possesses some unusual behaviors in this system,including a high spectral winding without the presence of long-range hop-pings,and a competition between two types of the NHSE,with the same and opposite inverse localization lengths for the two bands,respectively.Furthermore,it is found that the NHSE in this model does not always break the conventional BBC,which is also associated with whether the band gap closes at exceptional points under the periodic boundary condition.
其他文献
We present a method of constructing composites composed of conjugated polyelectrolytes (CPEs) and single-walled carbon nanotubes (SWCNTs) to obtain a high-performing flexible thermoelectric generator.In this ap-proach,three kinds of polymers,namely,poly[(
Controlling the anomalous Hall effect (AHE) inspires potential applications of quantum materials in the next genera-tion of electronics.The recently discovered quasi-2D kagome superconductor CsV3 Sb5 exhibits large AHE accompanying with the charge-density
With the growing need on distributed power supply for portable electronics,energy harvesting from environment be-comes a promising solution.Organic thermoelectric (TE) materials have advantages in intrinsic flexibility and low thermal conductivity,thus ho
As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer (WPT) in the near field has been extensively developed in recent years,and promoted a variety of practical applicatio
Synchronization is a widespread phenomenon in both synthetic and real-world networks.This collective behavior of simple and complex systems has been attracting much research during the last decades.Two different routes to synchrony are defined in networks
The kagome metals AV3Sb5 (A =K,Rb,Cs) under ambient pressure exhibit an unusual charge order,from which superconductivity emerges.In this work,by applying hydrostatic pressure using a liquid pressure medium and carrying out electrical resistance measureme
We investigate novel features of three-dimensional non-Hermitian Weyl semimetals,paying special attention to the unconventional bulk-boundary correspondence.We use the non-Bloch Chern numbers as the tool to obtain the topological phase diagram,which is al
We study two-body non-Hermitian physics in the context of an open dissipative system depicted by the Lindblad master equation.Adopting a minimal lattice model of a handful of interacting fermions with single-particle dissipation,we show that the non-Hermi
High-dimensional entanglement provides valuable resources for quantum technologies,including quantum commu-nication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant
We numerically study a one-dimensional,nonlinear lattice model which in the linear limit is relevant to the study of bending (flexural) waves.In contrast with the classic one-dimensional mass-spring system,the linear dispersion relation of the considered