论文部分内容阅读
火箭等宇宙飞行器的导航、制导系统用惯性传感器(陀螺、加速度计),要求具有很高的精度。航空宇宙技术研究所,过去对惯导用液浮惯性传感器的高精度化进行了大量研究工作。研究试制了液浮单自由度大速率积分陀螺及液浮摆式加速度计。为了提高性能,这些惯性传感器都是将常平架浮在与比重相等的浮油中,以便减轻轴承上的负荷。而且输出轴承是采用宝石轴承,可以减少绕输出轴的有害力矩。不过,这种轴承在宝石与尖轴之间不可避免的有松动和微小的接触摩擦。这就是妨碍传感器高精度化的重要原因之一。因此,为了将这些惯性传感器的输出轴改为电磁非接触悬浮,曾对自控型(交流谐振型)八极磁轴承方式进行了理论和实验研究,并取得了必要的设计资料。
Rocket and other spacecraft navigation, guidance system inertial sensors (gyro, accelerometer), requires a high degree of precision. Aerospace Technology Institute, in the past on inertial sensors floating liquid inertial sensors for a high degree of precision research work. Research and trial production of a single-degree liquid crystal floating-rate integrated gyro and liquid-floating pendulum accelerometer. In order to improve performance, these inertial sensors float the gimbal in the same proportion of oil slick, in order to reduce the load on the bearings. And the output bearing is a gem bearing, can reduce the harmful torque around the output shaft. However, this bearing between the gem and the sharp axis inevitably loose and slight contact friction. This is one of the important reasons that hinder the high precision of the sensor. Therefore, in order to change the output shaft of these inertial sensors to electromagnetic non-contact suspension, the self-controlled (AC resonance) octupole magnetic bearing method has been studied theoretically and experimentally, and the necessary design data have been obtained.