论文部分内容阅读
为了提高行人重识别准确率,并针对当前数据集较小容易产生的过拟合问题,提出一种基于孪生网络和多距离融合的算法,并将其运用到行人再识别任务中。首先,利用孪生网络提取输入局部块的特征,并使用改进的inception模块,使提取到的特征具有辨别性和鲁棒性;然后,基于提取到的图像特征,利用多距离融合算法在特征空间度量其特征匹配优化距离,利用Chamfer距离变换获取跨摄像头行人的鲁棒空间距离并进行多距离融合;最后,利用融合距离进行行人重排序,并在当前流行的VIPeR和CUHK03公开数据集上进行实验。实验结果表明,所提出的算法有效地提高了行人再识别的准确率。