Density functional theory study on the role of ternary alloying elements in TiFe-based hydrogen stor

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:fedsfdfasfdas
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The role of additional ternary alloying elements on the performance of stationary TiFe-based hydrogen storage alloys was investigated based on first-principles density functional theory calculations.As a ba-sic step for examinations,the site preference of each alloying element in the stoichiometric and non-stoichiometric B2 TiFe compounds was clarified considering possible anti-site defects.Based on the re-vealed site preference,the effect of various possible ternary elements on the hydrogen storage was exam-ined by focusing on the formation enthalpies of TiFeH and TiFeH2 hydrides,which were closely related to the change in the location of plateaus in the pressure-composition-temperature curve.Several physical properties such as the volume expansion due to hydride formation were also examined to provide ad-ditional criteria for selecting optimum alloying conditions in future alloying design processes.Candidate alloying elements that maximize the grain boundary embrittlement due to the solute segregation were proposed for the enhanced initial activation of TiFe-based hydrogen storage alloys.
其他文献
Recyclable thermosets and thermoset composites with covalent adaptable networks(CANs,or dynamic covalent networks)have attracted considerable attention in recent years due to the combined merits of excellent mechanical and thermal properties,and chemical
High-entropy alloys(HEAs)have attracted tremendous attention owing to their controllable mechanical properties,whereas additive manufacturing(AM)is an efficient and flexible processing route for novel materials design.However,a profound appraisal of the f
The corrosion performances of the as-cast and solution-treated Mg-0.5Zn samples were investigated in 0.9%NaCl solution and compared.From the electrochemical measurement results and corrosion morphol-ogy observations,it is found that the corrosion resistan
We propose a method to quantitatively characterize the fine phase transition processes of Li+/Er3+∶BaTiO3(BLET)ferroelectric materials by observing fluorescence wavelength shift.A lithium and erbium co-doped barium titanate ferroelectric ceramic was fabri
The slip behavior and mechanism of large-size Mo-3Nb single crystal have been investigated and dis-closed comprehensively at room temperature by quasi-static compression with various strains.With the increase of deformation,the slip traces change from sha
Although perovskite solar cells(PSCs)have achieved a high power conversion efficiency(PCE)within a short period of development,the high-temperature sintering of the constituent electron-selective layers(ESLs)impedes the commercialization.In this report,we
Oxide-dispersion-strengthened tungsten(ODS-W)and a CuCrZr alloy were bonded by a three-step pro-cess:(i)surface nano-activation,(ii)copper plating followed by annealing,and(iii)diffusion bonding.The morphological and structural evolutions of ODS-W and the
Many non-precious metal-based catalysts with high intrinsic activity for catalytic reactions are prone to structural degradation in practical application,which leads to poor stability.In this work,we propose c-CoSe2/o-CoSe2 as the oxygen electrode of lith
This study explored a multi-mechanism approach to improving the mechanical properties of a CoCr-FeMnNi high-entropy alloy through non-equiatomic alloy design and processing.The alloy design en-sures a single-phase face-centered cubic structure while lower
Owing to the unique features,such as mechanically robust,low-toxic,high stability,and high thermo-electric performance,CoSb3-based skutterudite materials are among art-of-the state thermoelectric can-didates.In this work,we develop a facile in-situ method