论文部分内容阅读
MoS2 coatings were prepared using an unbalanced bipolar pulsed DC (direct current) magnetron sputtering apparatus under different targets, cathode current densities, power modes and bias voltages. The morphology, structure and growth characteristics of MoS2 coatings were observed and identified respectively by scanning electron microscopy, X-ray diffractometry and mass spectrometry. The results show that MoS2 coatings evolve with the (002) basal plane parallel to the surface by using cold pressed target with lower density, lower cathodic current density, bipolar pulse DC power and minus bias voltage, whereas the coatings deposited under hot pressed target, higher cathodic current density, simple DC power and positive bias voltage have the (002) basal plane perpendicular to the surface. The influence of deposition conditions on the crystal structure of MoS2 coating is implemented by altering its growth rate and the energy of sputtering-deposition particles.
MoS2 coatings were prepared using an unbalanced bipolar pulsed DC (direct current) magnetron sputtering apparatus under different targets, cathode current densities, power modes and bias voltages. The morphology, structure and growth characteristics of MoS2 coatings were observed and identified respectively by scanning electron microscopy , X-ray diffractometry and mass spectrometry. The results show that MoS2 coatings evolve with the (002) basal plane parallel to the surface by using pressed targets with lower density, lower cathodic current density, bipolar pulse DC power and minus bias voltage, while the coatings deposited under hot pressed target, higher cathodic current density, simple DC power and positive bias voltage have the (002) basal plane perpendicular to the surface. The influence of deposition conditions on the crystal structure of MoS2 coating is implemented by altering its growth rate and the energy of sputtering-deposition particles.