论文部分内容阅读
基于模糊图像的退化过程、卷积模糊模型和模糊图像生成的机理,提出一种基于L0范数的正则化模糊核估计方法,解决了遥感图像重建问题中0范数难求解的难题。该方法以模糊核稀疏性为先验知识,采用对应梯度的L0范数为正则项,有效避免了细小边缘对模糊核估计的影响,使得模糊核的估计更加准确。进一步采用超拉普拉斯分布来近似图像梯度的重尾分布,利用L0.5范数正则化对模糊图像做反卷积,从而恢复出原始图像。与传统方法相比,本文方法可以准确地估计出图像的模糊核,很好地抑制恢复图像的振铃现象,有效地提升遥感图像的质量。模糊图像