论文部分内容阅读
A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water conservation/saving, and (3) water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.
A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water The dynamic variation of the Suzhou WRCC was simulated with the supply-declination principle for the time period of 2001 to 2030, and the results were based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.