论文部分内容阅读
随着大量的科研论文出现在互联网上,从中精确地抽取论文头部信息和引文信息显得十分重要。该文提出了一种基于隐马尔可夫模型的中文科研论文头部信息和引文信息抽取算法,分析了模型结构的学习和参数估计方法。在进行信息抽取时,利用分隔符、特定标识符等格式信息对文本进行分块,利用隐马尔可夫模型进行指定域的抽取。实验结果表明,该算法具有良好的准确率和召回率。