论文部分内容阅读
为了更好地推进生态灌区建设,对灌区内杂草进行检测、控制,提出一种基于卷积神经网络的杂草分类和密度测算方法.通过无人机低空拍摄采集3种杂草(藜草、葎草、苍耳)和3种作物(小麦、花生、玉米)作为数据集,经过裁剪、灰度化等前期处理,并通过旋转方式扩充数据集,最后收集17 115张训练样本和750张测试样本,然后将训练集输送给卷积神经网络,采用Softmax回归,实现6类植物的分类.为降低网络参数,文中试验了100×100和300×300不同分辨率图像对识别精度的影响,分类结果表明300